New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Earthquake

An earthquake is the result of a sudden release of stored energy in the Earth's crust that creates seismic waves. Earthquakes are accordingly measured with a seismometer, commonly known as a seismograph. The magnitude of an earthquake is conventionally reported using the Richter scale or a related Moment scale (with magnitude 3 or lower earthquakes being hard to notice and magnitude 7 causing serious damage over large areas).

At the Earth's surface, earthquakes may manifest themselves by a shaking or displacement of the ground. Sometimes, they cause tsunamis, which may lead to loss of life and destruction of property. An earthquake is caused by tectonic plates getting stuck and putting a strain on the ground. The strain becomes so great that rocks give way by breaking and sliding along fault planes.

Earthquakes may occur naturally or as a result of human activities. Smaller earthquakes can also be caused by volcanic activity, landslides, mine blasts, and nuclear experiments. In its most generic sense, the word earthquake is used to describe any seismic event—whether a natural phenomenon or an event caused by humans—that generates seismic waves.

Most naturally occurring earthquakes are related to the tectonic nature of the Earth. Such earthquakes are called tectonic earthquakes. The Earth's lithosphere is a patchwork of plates in slow but constant motion caused by the release to space of the heat in the Earth's mantle and core. The heat causes the rock in the Earth to become flow on geological timescales, so that the plates move slowly but surely. Plate boundaries lock as the plates move past each other, creating frictional stress. When the frictional stress exceeds a critical value, called local strength, a sudden failure occurs. The boundary of tectonic plates along which failure occurs is called the fault plane. When the failure at the fault plane results in a violent displacement of the Earth's crust, the elastic strain energy is released and seismic waves are radiated, thus causing an earthquake. This process of strain, stress, and failure is referred to as the Elastic-rebound theory. It is estimated that only 10 percent or less of an earthquake's total energy is radiated as seismic energy. Most of the earthquake's energy is used to power the earthquake fracture growth and is converted into heat, or is released to friction.

The majority of tectonic earthquakes originate at depths not exceeding tens of kilometers. In subduction zones, where older and colder oceanic crust descends beneath another tectonic plate, Deep focus earthquakes may occur at much greater depths (up to seven hundred kilometers). These are earthquakes that occur at a depth at which the subducted lithosphere should no longer be brittle, due to the high temperature and pressure. A possible mechanism for the generation of deep focus earthquakes is faulting caused by olivine undergoing a phase transition into a spinel structure.

Earthquakes may also occur in volcanic regions and are caused there both by tectonic faults and by the movement of magma in volcanoes. Such earthquakes can be an early warning of volcanic eruptions.

A recently proposed theory suggests that some earthquakes may occur in a sort of earthquake storm, where one earthquake will trigger a series of earthquakes each triggered by the previous shifts on the fault lines, similar to aftershocks, but occurring years later, and with some of the later earthquakes as damaging as the early ones. Such a pattern was observed in the sequence of about a dozen earthquakes that struck the North Anatolian Fault in Turkey in the 20th century, the half dozen large earthquakes in New Madrid in 1811-1812, and has been inferred for older anomalous clusters of large earthquakes in the Middle East and in the Mojave Desert.

Related Stories
 


Earth & Climate News

November 8, 2025

Scientists have discovered that deep-sea mining plumes can strip vital nutrition from the ocean’s twilight zone, replacing natural food with nutrient-poor sediment. The resulting “junk food” effect could starve life across entire marine ...
A new study shows that the Southern Ocean releases far more carbon dioxide in winter than once thought. By combining laser satellite data with AI analysis, scientists managed to “see” through the polar darkness for the first time. The results ...
Researchers warn Antarctica is undergoing abrupt changes that could trigger global consequences. Melting ice, collapsing ice shelves, and disrupted ocean circulation threaten sea levels, ecosystems, and climate stability. Wildlife such as penguins ...
A new copper-magnesium-iron catalyst transforms CO2 into CO at low temperatures with record-breaking efficiency and stability. The discovery paves the way for affordable, scalable production of carbon-neutral synthetic ...
Scientists discovered 6-million-year-old ice in Antarctica, offering the oldest direct record of Earth’s ancient atmosphere and climate. The finding reveals a dramatic cooling trend and promises insights into greenhouse gas changes over millions ...
When Surtsey erupted from the sea in 1963, it became a living experiment in how life begins anew. Decades later, scientists discovered that the plants colonizing this young island weren’t carried by the wind or floating on ocean currents, but ...
Once considered geologically impossible, earthquakes in stable regions like Utah and Groningen can actually occur due to long-inactive faults that slowly “heal” and strengthen over millions of years. When reactivated—often by human ...
Even with futuristic geoengineering methods like Stratospheric Aerosol Injection, the fate of wine, coffee, and cacao crops remains uncertain. Scientists found that while this intervention could ...
Beneath the ocean’s surface, bacteria have evolved specialized enzymes that can digest PET plastic, the material used in bottles and clothes. Researchers at KAUST discovered that a unique molecular signature distinguishes enzymes capable of ...
Bamboo tissue paper, often marketed as an eco-friendly alternative, may not be as green as consumers think. Researchers at NC State University found that while bamboo fibers themselves are not more polluting than wood, China’s coal-dependent ...
UIC researchers predict that the Sahara Desert could see up to 75% more rain by the end of this century due to rising global temperatures. Using 40 climate models, the team found widespread precipitation increases across Africa, though some regions ...
UC Davis scientists uncovered Aptostichus ramirezae, a new trapdoor spider species living under California’s dunes. Genetic analysis revealed it was distinct from its close relative, Aptostichus simus. The species was named after pioneering ...

Latest Headlines

updated 12:56 pm ET