New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Earthquake

An earthquake is the result of a sudden release of stored energy in the Earth's crust that creates seismic waves. Earthquakes are accordingly measured with a seismometer, commonly known as a seismograph. The magnitude of an earthquake is conventionally reported using the Richter scale or a related Moment scale (with magnitude 3 or lower earthquakes being hard to notice and magnitude 7 causing serious damage over large areas).

At the Earth's surface, earthquakes may manifest themselves by a shaking or displacement of the ground. Sometimes, they cause tsunamis, which may lead to loss of life and destruction of property. An earthquake is caused by tectonic plates getting stuck and putting a strain on the ground. The strain becomes so great that rocks give way by breaking and sliding along fault planes.

Earthquakes may occur naturally or as a result of human activities. Smaller earthquakes can also be caused by volcanic activity, landslides, mine blasts, and nuclear experiments. In its most generic sense, the word earthquake is used to describe any seismic event—whether a natural phenomenon or an event caused by humans—that generates seismic waves.

Most naturally occurring earthquakes are related to the tectonic nature of the Earth. Such earthquakes are called tectonic earthquakes. The Earth's lithosphere is a patchwork of plates in slow but constant motion caused by the release to space of the heat in the Earth's mantle and core. The heat causes the rock in the Earth to become flow on geological timescales, so that the plates move slowly but surely. Plate boundaries lock as the plates move past each other, creating frictional stress. When the frictional stress exceeds a critical value, called local strength, a sudden failure occurs. The boundary of tectonic plates along which failure occurs is called the fault plane. When the failure at the fault plane results in a violent displacement of the Earth's crust, the elastic strain energy is released and seismic waves are radiated, thus causing an earthquake. This process of strain, stress, and failure is referred to as the Elastic-rebound theory. It is estimated that only 10 percent or less of an earthquake's total energy is radiated as seismic energy. Most of the earthquake's energy is used to power the earthquake fracture growth and is converted into heat, or is released to friction.

The majority of tectonic earthquakes originate at depths not exceeding tens of kilometers. In subduction zones, where older and colder oceanic crust descends beneath another tectonic plate, Deep focus earthquakes may occur at much greater depths (up to seven hundred kilometers). These are earthquakes that occur at a depth at which the subducted lithosphere should no longer be brittle, due to the high temperature and pressure. A possible mechanism for the generation of deep focus earthquakes is faulting caused by olivine undergoing a phase transition into a spinel structure.

Earthquakes may also occur in volcanic regions and are caused there both by tectonic faults and by the movement of magma in volcanoes. Such earthquakes can be an early warning of volcanic eruptions.

A recently proposed theory suggests that some earthquakes may occur in a sort of earthquake storm, where one earthquake will trigger a series of earthquakes each triggered by the previous shifts on the fault lines, similar to aftershocks, but occurring years later, and with some of the later earthquakes as damaging as the early ones. Such a pattern was observed in the sequence of about a dozen earthquakes that struck the North Anatolian Fault in Turkey in the 20th century, the half dozen large earthquakes in New Madrid in 1811-1812, and has been inferred for older anomalous clusters of large earthquakes in the Middle East and in the Mojave Desert.

Related Stories
 


Earth & Climate News

January 7, 2026

Scientists have discovered that wildfires release far more air-polluting gases than previously estimated. Many of these hidden emissions can transform into fine particles that are dangerous to breathe. The study shows wildfire pollution rivals ...
Earthquakes happen daily, sometimes with devastating consequences, yet predicting them remains out of reach. What scientists can do is map the hidden layers beneath the surface that control how strongly the ground shakes. A new approach speeds up ...
When a huge earthquake struck near Kamchatka, the SWOT satellite captured an unprecedented, high-resolution view of the resulting tsunami as it crossed the Pacific. The data revealed the waves were ...
A meltwater lake that formed in the mid-1990s on Greenland’s 79°N Glacier has been draining in sudden, dramatic bursts through cracks and vertical ice shafts. These events have accelerated in recent years, creating strange triangular fracture ...
CO2 can stimulate plant growth, but only when enough nitrogen is available—and that key ingredient has been seriously miscalculated. A new study finds that natural nitrogen fixation has been overestimated by about 50 percent in major climate ...
Overfished coral reefs are producing far less food than they could. Researchers found that letting reef fish populations recover could boost sustainable fish yields by nearly 50%, creating millions of extra meals each year. Countries with high ...
Microplastics in rivers, lakes, and oceans aren’t just drifting debris—they’re constantly leaking invisible clouds of chemicals into the water. New research shows that sunlight drives this process, causing different plastics to release ...
Scientists have discovered a clever way to turn carrot processing leftovers into a nutritious and surprisingly appealing protein. By growing edible fungi on carrot side streams, researchers produced fungal mycelium that can replace traditional ...
Scientists have uncovered an extensive underwater vent system near Milos, Greece, hidden along active fault lines beneath the seafloor. These geological fractures act as pathways for hot, gas-rich fluids to escape, forming clusters of vents with ...
The Arctic is changing rapidly, and scientists have uncovered a powerful mix of natural and human-driven processes fueling that change. Cracks in sea ice release heat and pollutants that form clouds and speed up melting, while emissions from nearby ...
A new catalyst design could transform how acetaldehyde is made from renewable bioethanol. Researchers found that a carefully balanced mix of gold, manganese, and copper creates a powerful synergy that boosts efficiency while lowering operating ...
Scientists have built the most detailed 3D models yet of temperatures deep beneath Greenland. The results reveal uneven heat hidden below the ice, shaped by Greenland’s ancient path over a volcanic hotspot. This underground warmth affects how the ...

Latest Headlines

updated 12:56 pm ET