New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Earthquake

An earthquake is the result of a sudden release of stored energy in the Earth's crust that creates seismic waves. Earthquakes are accordingly measured with a seismometer, commonly known as a seismograph. The magnitude of an earthquake is conventionally reported using the Richter scale or a related Moment scale (with magnitude 3 or lower earthquakes being hard to notice and magnitude 7 causing serious damage over large areas).

At the Earth's surface, earthquakes may manifest themselves by a shaking or displacement of the ground. Sometimes, they cause tsunamis, which may lead to loss of life and destruction of property. An earthquake is caused by tectonic plates getting stuck and putting a strain on the ground. The strain becomes so great that rocks give way by breaking and sliding along fault planes.

Earthquakes may occur naturally or as a result of human activities. Smaller earthquakes can also be caused by volcanic activity, landslides, mine blasts, and nuclear experiments. In its most generic sense, the word earthquake is used to describe any seismic event—whether a natural phenomenon or an event caused by humans—that generates seismic waves.

Most naturally occurring earthquakes are related to the tectonic nature of the Earth. Such earthquakes are called tectonic earthquakes. The Earth's lithosphere is a patchwork of plates in slow but constant motion caused by the release to space of the heat in the Earth's mantle and core. The heat causes the rock in the Earth to become flow on geological timescales, so that the plates move slowly but surely. Plate boundaries lock as the plates move past each other, creating frictional stress. When the frictional stress exceeds a critical value, called local strength, a sudden failure occurs. The boundary of tectonic plates along which failure occurs is called the fault plane. When the failure at the fault plane results in a violent displacement of the Earth's crust, the elastic strain energy is released and seismic waves are radiated, thus causing an earthquake. This process of strain, stress, and failure is referred to as the Elastic-rebound theory. It is estimated that only 10 percent or less of an earthquake's total energy is radiated as seismic energy. Most of the earthquake's energy is used to power the earthquake fracture growth and is converted into heat, or is released to friction.

The majority of tectonic earthquakes originate at depths not exceeding tens of kilometers. In subduction zones, where older and colder oceanic crust descends beneath another tectonic plate, Deep focus earthquakes may occur at much greater depths (up to seven hundred kilometers). These are earthquakes that occur at a depth at which the subducted lithosphere should no longer be brittle, due to the high temperature and pressure. A possible mechanism for the generation of deep focus earthquakes is faulting caused by olivine undergoing a phase transition into a spinel structure.

Earthquakes may also occur in volcanic regions and are caused there both by tectonic faults and by the movement of magma in volcanoes. Such earthquakes can be an early warning of volcanic eruptions.

A recently proposed theory suggests that some earthquakes may occur in a sort of earthquake storm, where one earthquake will trigger a series of earthquakes each triggered by the previous shifts on the fault lines, similar to aftershocks, but occurring years later, and with some of the later earthquakes as damaging as the early ones. Such a pattern was observed in the sequence of about a dozen earthquakes that struck the North Anatolian Fault in Turkey in the 20th century, the half dozen large earthquakes in New Madrid in 1811-1812, and has been inferred for older anomalous clusters of large earthquakes in the Middle East and in the Mojave Desert.

Related Stories
 


Earth & Climate News

November 20, 2025

Researchers have launched the first coordinated plan to protect microbial biodiversity, calling attention to the “invisible 99% of life” that drives essential Earth systems. The IUCN has formally recognized this effort through the creation of ...
A nationwide analysis has uncovered how sprawling fossil fuel infrastructure sits surprisingly close to millions of American homes. The research shows that 46.6 million people live within about a mile of wells, refineries, pipelines, storage sites, ...
Experts say the ocean could help absorb carbon dioxide, but today’s technologies are too uncertain to be scaled up safely. New findings released during COP30 highlight the risks of rushing into marine carbon removal without proper monitoring and ...
Massive Sargassum blooms sweeping across the Caribbean and Atlantic are fueled by a powerful nutrient partnership: phosphorus pulled to the surface by equatorial upwelling and nitrogen supplied by cyanobacteria living directly on the drifting algae. ...
Researchers discovered that ancient peat bogs grew rapidly when the Southern Westerly Winds suddenly shifted thousands of years ago. These wind changes affected both peatland carbon storage and how the Southern Ocean absorbed CO₂. Today the winds ...
Microplastics—tiny particles now found in food, water, air, and even human tissues—may directly accelerate artery-clogging disease, and new research shows the danger may be far greater for males. In mice, environmentally realistic doses of ...
Penn State scientists identified a striking rise in melanoma across several Pennsylvania counties dominated by cropland and herbicide use. The elevated risk persisted even after factoring in sunlight, suggesting an environmental influence beyond the ...
Scientists discovered that a week of full submergence is enough to kill most rice plants, making flooding a far greater threat than previously understood. Intensifying extreme rainfall events may amplify these losses unless vulnerable regions adopt ...
A new floating droplet electricity generator is redefining how rain can be harvested as a clean power source by using water itself as both structural support and an electrode. This nature-integrated design dramatically reduces weight and cost ...
Researchers in Greenland used a 10-kilometer fiber-optic cable to track how iceberg calving stirs up warm seawater. The resulting surface tsunamis and massive hidden underwater waves intensify melting at the glacier face. This powerful mixing effect ...
Hektoria Glacier’s sudden eight-kilometer collapse stunned scientists, marking the fastest modern ice retreat ever recorded in Antarctica. Its flat, below-sea-level ice plain allowed huge slabs of ice to detach rapidly once retreat began. Seismic ...
Arctic sea ice is disappearing fast, and scientists have turned to an unexpected cosmic clue—space dust—to uncover how ice has changed over tens of thousands of years. By tracking helium-3–bearing dust trapped (or blocked) by ancient ice, ...

Latest Headlines

updated 12:56 pm ET