New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Earthquake

An earthquake is the result of a sudden release of stored energy in the Earth's crust that creates seismic waves. Earthquakes are accordingly measured with a seismometer, commonly known as a seismograph. The magnitude of an earthquake is conventionally reported using the Richter scale or a related Moment scale (with magnitude 3 or lower earthquakes being hard to notice and magnitude 7 causing serious damage over large areas).

At the Earth's surface, earthquakes may manifest themselves by a shaking or displacement of the ground. Sometimes, they cause tsunamis, which may lead to loss of life and destruction of property. An earthquake is caused by tectonic plates getting stuck and putting a strain on the ground. The strain becomes so great that rocks give way by breaking and sliding along fault planes.

Earthquakes may occur naturally or as a result of human activities. Smaller earthquakes can also be caused by volcanic activity, landslides, mine blasts, and nuclear experiments. In its most generic sense, the word earthquake is used to describe any seismic event—whether a natural phenomenon or an event caused by humans—that generates seismic waves.

Most naturally occurring earthquakes are related to the tectonic nature of the Earth. Such earthquakes are called tectonic earthquakes. The Earth's lithosphere is a patchwork of plates in slow but constant motion caused by the release to space of the heat in the Earth's mantle and core. The heat causes the rock in the Earth to become flow on geological timescales, so that the plates move slowly but surely. Plate boundaries lock as the plates move past each other, creating frictional stress. When the frictional stress exceeds a critical value, called local strength, a sudden failure occurs. The boundary of tectonic plates along which failure occurs is called the fault plane. When the failure at the fault plane results in a violent displacement of the Earth's crust, the elastic strain energy is released and seismic waves are radiated, thus causing an earthquake. This process of strain, stress, and failure is referred to as the Elastic-rebound theory. It is estimated that only 10 percent or less of an earthquake's total energy is radiated as seismic energy. Most of the earthquake's energy is used to power the earthquake fracture growth and is converted into heat, or is released to friction.

The majority of tectonic earthquakes originate at depths not exceeding tens of kilometers. In subduction zones, where older and colder oceanic crust descends beneath another tectonic plate, Deep focus earthquakes may occur at much greater depths (up to seven hundred kilometers). These are earthquakes that occur at a depth at which the subducted lithosphere should no longer be brittle, due to the high temperature and pressure. A possible mechanism for the generation of deep focus earthquakes is faulting caused by olivine undergoing a phase transition into a spinel structure.

Earthquakes may also occur in volcanic regions and are caused there both by tectonic faults and by the movement of magma in volcanoes. Such earthquakes can be an early warning of volcanic eruptions.

A recently proposed theory suggests that some earthquakes may occur in a sort of earthquake storm, where one earthquake will trigger a series of earthquakes each triggered by the previous shifts on the fault lines, similar to aftershocks, but occurring years later, and with some of the later earthquakes as damaging as the early ones. Such a pattern was observed in the sequence of about a dozen earthquakes that struck the North Anatolian Fault in Turkey in the 20th century, the half dozen large earthquakes in New Madrid in 1811-1812, and has been inferred for older anomalous clusters of large earthquakes in the Middle East and in the Mojave Desert.

Related Stories
 


Earth & Climate News

February 2, 2026

As demand for critical metals grows, scientists have taken a rare, close look at life on the deep Pacific seabed where mining may soon begin. Over five years and 160 days at sea, researchers documented nearly 800 species, many previously unknown. ...
SAR11 bacteria dominate the world’s oceans by being incredibly efficient, shedding genes to survive in nutrient-poor waters. But that extreme streamlining appears to backfire when conditions change. Under stress, many cells keep copying their DNA ...
Scientists studying ancient ocean fossils found that the Arabian Sea was better oxygenated 16 million years ago, even though the planet was warmer than today. Oxygen levels only plunged millions of years later, after the climate cooled, defying ...
Small mammals are early warning systems for environmental damage, but many species look almost identical, making them hard to track. Scientists have developed a new footprint-based method that can tell apart nearly indistinguishable species with ...
Scientists have created a device that captures carbon dioxide and transforms it into a useful chemical in a single step. The new electrode works with realistic exhaust gases rather than requiring purified CO2. It converts the captured gas into ...
After analyzing 40 years of tree records across the Andes and Amazon, researchers found that climate change is reshaping tropical forests in uneven ways. Some regions are steadily losing tree species, especially where conditions are hotter and ...
A new building material developed by engineers at Worcester Polytechnic Institute could change how the world builds. Made using an enzyme that turns carbon dioxide into solid minerals, the material cures in hours and locks away carbon instead of ...
Mountain regions around the world are heating up faster than the lands below them, triggering dramatic shifts in snow, rain, and water supply that could affect over a billion people. A major global review finds that rising temperatures are turning ...
Plastic-coated fertilizers used on farms are emerging as a major but hidden source of ocean microplastics. A new study found that only a tiny fraction reaches beaches through rivers, while direct drainage from fields to the sea sends far more ...
Tiny plastic particles drifting through the oceans may be quietly weakening one of Earth’s most powerful climate defenses. New research suggests microplastics are disrupting marine life that helps oceans absorb carbon dioxide, while also releasing ...
New research shows tropical forests can recover twice as fast after deforestation when their soils contain enough nitrogen. Scientists followed forest regrowth across Central America for decades and found that nitrogen plays a decisive role in how ...
In the rapidly disappearing Atlantic Forest, mosquitoes are adapting to a human-dominated landscape. Scientists found that many species now prefer feeding on people rather than the forest’s diverse wildlife. This behavior dramatically raises the ...

Latest Headlines

updated 12:56 pm ET