Featured Research

from universities, journals, and other organizations

New Discovery May Offer Protection Against Stroke

Date:
October 1, 1997
Source:
Johns Hopkins Medical Institutions
Summary:
By further tracking nitric oxide's actions in the brain, Johns Hopkins scientists report they have figured out what may be a universal sequence of biochemical events from stroke to brain cell death.

By further tracking nitric oxide's actions in the brain, Johns Hopkins scientists report they have figured out what may be a universal sequence of biochemical events from stroke to brain cell death.

Related Articles


Cell death appears to result from the overactivation of an enzyme called poly (ADP-ribose) polymerase, or PARP, which lethally depletes energy sources from the cells, according to Valina Dawson, Ph.D., associate professor of neurology. When she and her colleagues induced strokes in mice genetically engineered without a PARP gene, brain damage was dramatically reduced in comparison to a group of unaltered mice.

"Nitric oxide has long been known to play a role in neuronal damage after stroke, and now it seems that a candidate pathway for that injury is DNA damage leading to unusual PARP activation," Dawson reports in the October issue of Nature Medicine. Nitric oxide does its damage by sabotaging the DNA of nerve cells. The DNA nicks and breaks activate PARP, which is normally, for the most part, dormant, she says.

"Clinically, our work suggests that inhibiting PARP may spare nerve cells from energy loss, thus preventing irreversible damage and providing protection," says Solomon Snyder, M.D., distinguished service professor and director of the Department of Neuroscience and an author of the paper. "The reduction in brain damage from stroke we observed among the mice without PARP exceeds the protection reported with any known stroke treatment."

Paradoxically, in cases of minor damage, PARP acts as a relief squad, activated to make repairs. But with more substantial damage, such as severe loss of blood during stroke, PARP can be overactivated. When this happens, it uses up NAD, the substance PARP acts on, and ATP, the major energy source of all cells, causing the cell to die of energy depletion.

In the study, researchers first compared brain tissue from the so-called "knockout" mice, bred in Austria without a PARP gene, to unaltered mice to measure toxicity caused by interaction with other brain chemicals released in cases of neurological damage. The tissue from the knockouts were completely resistant to neurotoxicity. In tissues from the unaltered mice, however, approximately 65 percent of the cells were destroyed.

They then induced experimental strokes in the mice to evaluate the extent of resulting brain injury. Tissue damage in the genetically altered mice was 80 percent less than in the unaltered mice.

"The reduction in stroke damage in PARP knockout animals suggests that PARP inhibitor medications will be useful for treating strokes," Snyder says.

Stroke is the third leading cause of death and disability, affecting 3 million people each year. It occurs when a blood vessel bringing oxygen and nutrients to the brain bursts or is clogged by a blood clot or some other particle. Because of this rupture or blockage, part of the brain doesn't get the flow of blood it needs, and the nerve cells in that section start to die within minutes. Brain damage from a stroke can diminish the senses, speech and the ability to understand speech, behavioral patterns, thought patterns, and memory. Paralysis on one side of the body is common.

Michael Muskowitz and colleagues at the Massachusetts General Hospital have independently replicated these findings, Snyder says, and will be publishing their results in the near future.

The study's other authors were Mikael J.L. Eliasson; Kenji Sampei, M.D.; Allen S. Mandir, M.D.; Patricia D. Hurn, Ph.D.; Richard J. Traystman, Ph.D.; Jun Bao, Ph.D.; Andrew Pieper; Zhao-Qi Wang, Ph.D.; and Ted M. Dawson, M.D., Ph.D..

Johns Hopkins has previously licensed the rights for PARP inhibitors to Guilford Pharmaceuticals in Baltimore. Under the terms of the previous license agreement between the Johns Hopkins University and Guilford, Snyder, Valina Dawson and Ted Dawson are entitled to a share of sales royalties received by the University from Guilford.

The University owns stock in Guilford, with Snyder and Ted Dawson having an interest in the University share under University policy. The University's stock is subject to certain restrictions under University policy. Snyder also serves on the Board of Directors and the Scientific Advisory Board of Guilford, he is a consultant to the company, and he owns additional equity in Guilford. This arrangement is being managed by the Johns Hopkins University in accordance with its conflict-of-interest policies.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "New Discovery May Offer Protection Against Stroke." ScienceDaily. ScienceDaily, 1 October 1997. <www.sciencedaily.com/releases/1997/10/971001040006.htm>.
Johns Hopkins Medical Institutions. (1997, October 1). New Discovery May Offer Protection Against Stroke. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/1997/10/971001040006.htm
Johns Hopkins Medical Institutions. "New Discovery May Offer Protection Against Stroke." ScienceDaily. www.sciencedaily.com/releases/1997/10/971001040006.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
Yoga Could Be As Beneficial For The Heart As Walking, Biking

Yoga Could Be As Beneficial For The Heart As Walking, Biking

Newsy (Dec. 17, 2014) Yoga can help your weight, blood pressure, cholesterol and heart just as much as biking and walking does, a new study suggests. Video provided by Newsy
Powered by NewsLook.com
1st Responders Trained for Autism Sensitivity

1st Responders Trained for Autism Sensitivity

AP (Dec. 16, 2014) More departments are ordering their first responders to sit in on training sessions that focus on how to more effectively interact with those with autism spectrum disorder (Dec. 16) Video provided by AP
Powered by NewsLook.com
Guys Are Idiots, According To Sarcastic Study

Guys Are Idiots, According To Sarcastic Study

Newsy (Dec. 12, 2014) A study out of Britain suggest men are more idiotic than women based on the rate of accidental deaths and other factors. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins