Featured Research

from universities, journals, and other organizations

Recombinant Protein Immunizes Mice, Promises New Strategy Against Infection And Cancer

Date:
December 1, 1997
Source:
Whitehead Institute For Biomedical Research
Summary:
Solving a long-standing problem in vaccine development, scientists have crafted a new way to deliver foreign proteins into the body such that the immune system is primed to attack virus-infected cells and cancer cells.

Solving a long-standing problem in vaccine development, scientists have crafted a new way to deliver foreign proteins into the body such that the immune system is primed to attack virus-infected cells and cancer cells. Because this kind of an immune response is key to vaccine development, the findings have profound implications for developing safe vaccines to immunize against AIDS and other infectious diseases, and for creating new cancer therapies. Results from the study, led by Dr. Richard Young, Member of the Whitehead Institute for Biomedical Research, will be published in the November 25 issue of the Proceedings of the National Academy of Sciences.

In the study, scientists created a new, recombinant protein by fusing together a special type of protein called a 'heat shock protein,' isolated from the tuberculosis bacterium, and a protein called ovalbumin, long used by immunologists to study immune function. When scientists injected the recombinant protein into mice, the animals mounted an immune response against ovalbumin and developed immunity against cancer cells that make ovalbumin. These ovalbumin-producing cancer cells normally kill unimmunized mice.

"These results have led us to use the same heat shock fusion technology to develop vaccine candidates against AIDS and other infectious diseases," says Dr. Young, who now leads a consortium of scientists from Harvard University and the Massachusetts Institute of Technology to develop a vaccine against AIDS. Dr. Young and his colleagues are creating a recombinant monkey vaccine consisting of the heat shock protein fused to a protein from the Simian Immunodeficiency Virus (SIV). Researchers plan to test the efficacy of this vaccine in macaques.

When germs enter the body, the immune system responds in two ways. One arm of the immune system, led by immune cells called B cells, works mainly by secreting antibodies into the body's fluids. These antibodies seek and destroy the germs circulating in the bloodstream. However, antibodies are useless when it comes to penetrating cells. The task of attacking cells infected by viruses or deformed by cancer falls to the second arm of the immune system, led by immune cells called T cells. T cells orchestrate a multi-pronged attack, and if appropriate, turn into 'killer cells,' called cytotoxic T cells or CTLs, that home in on infected cells and destroy them.

The goal of vaccine development is to produce a full-blown immune response without causing full-blown disease. However, when vaccines containing soluble proteins from the microorganisms are used to produce an immune response, the CTLs are rarely activated.

For decades, vaccine development experts have sought to find a simple and practical way to activate the killer cells or CTLs using soluble proteins, but finding a method that works has been a challenge.

"We were able to solve this problem by taking advantage of the observation that a class of proteins, called heat-shock proteins, are exceptions to the rule that soluble proteins are unable to stimulate CTL responses. In fact, heat-shock proteins are extremely potent in stimulating a CTL immune response," says Dr. Young.

Heat shock proteins, or stress proteins, are a family of proteins that cells produce in response to stress from heat, injury, germs, or toxins. Normally, these proteins act as molecular chaperones, binding to other proteins and ferrying them to and from various compartments of the cell. A few years ago, immunologists noticed that heat shock proteins are present on the surface of bacteria and are responsible for flagging the T cells and triggering the CTLs to attack.

Dr. Young and his colleagues found one particular protein from the tuberculosis bacterium, called hsp70, that could elicit powerful immune responses and could be used as an immune system booster. The special properties of hsp70 prompted the researchers to investigate whether soluble hsp70 proteins could be fused with bacterial or viral proteins of interest to elicit the desired type of immune response.

"This study shows that the heat shock proteins can function as vehicles to deliver viral proteins to the right immune system pathway and elicit a CTL response. The fusion technology can also be used against cancer cells. Microbial stress proteins could be introduced into tumor cells to act as red flags that attract a CTL immune response," says Dr. Young. The work reported in the PNAS paper was supported by the National Institutes of Health.


Story Source:

The above story is based on materials provided by Whitehead Institute For Biomedical Research. Note: Materials may be edited for content and length.


Cite This Page:

Whitehead Institute For Biomedical Research. "Recombinant Protein Immunizes Mice, Promises New Strategy Against Infection And Cancer." ScienceDaily. ScienceDaily, 1 December 1997. <www.sciencedaily.com/releases/1997/12/971201070249.htm>.
Whitehead Institute For Biomedical Research. (1997, December 1). Recombinant Protein Immunizes Mice, Promises New Strategy Against Infection And Cancer. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/1997/12/971201070249.htm
Whitehead Institute For Biomedical Research. "Recombinant Protein Immunizes Mice, Promises New Strategy Against Infection And Cancer." ScienceDaily. www.sciencedaily.com/releases/1997/12/971201070249.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins