Featured Research

from universities, journals, and other organizations

Fruit Flies May Shed Light On Cocaine Addiction

Date:
January 19, 1998
Source:
NIH-National Institute Of General Medical Sciences
Summary:
Two geneticists have found that fruit flies respond in the same way to "crack" cocaine as do other animals, including humans. Because humans and fruit flies use many similar biochemical pathways, this discovery suggests that the flies may help scientists unravel the molecular basis of cocaine addiction in people. It may also lay the foundation for highly specific drugs to treat cocaine addiction.

Two geneticists have found that fruit flies respond in the same way to "crack" cocaine as do other animals, including humans. Because humans and fruit flies use many similar biochemical pathways, this discovery suggests that the flies may help scientists unravel the molecular basis of cocaine addiction in people. It may also lay the foundation for highly specific drugs to treat cocaine addiction.

The research, performed by Dr. Jay Hirsh and Colleen McClung of the University of Virginia in Charlottesville, grew out of the group's long-term genetic studies on brain receptors and neurotransmitters--such as dopamine and serotonin--involved in learning, memory, and motor function. Their current findings are featured in a cover story in the January 15 issue of Current Biology.

Cocaine is one of the most powerfully addictive street drugs. Extensive studies on rodents and monkeys have provided little information about the molecular processes that underlie cocaine's behavioral and addictive effects. Using fruit flies in such studies offers several advantages. The genetics of the flies have been intensively studied for 80 years, providing researchers with a rich information base from which to devise and interpret experiments. Not insignificantly, research on flies is cheaper, easier, and faster than similar studies on mammals.

The flies, formally called Drosophila melanogaster, reacted in striking and reproducible ways in response to different levels of cocaine. They also became "sensitized" to the drug, a physiological process thought to be involved in human drug addiction.

"This study shows that the nature of the changes in the Drosophila brain and nervous system in response to cocaine are probably very similar to those that occur in the human brain. This gives us a new tool to learn more about brain receptors and neurotransmitters, and also to better understand the genetic and physiological basis of cocaine addiction," said Dr. Michael Sesma of the Division of Genetics and Developmental Biology at the National Institute of General Medical Sciences (NIGMS), which supported the research.

To deliver cocaine to the flies, the researchers applied a droplet of "crack" cocaine dissolved in alcohol to a wire filament. After allowing the alcohol to evaporate, they placed the wire in a tiny glass tube containing several flies. As the wire was heated by an electric current, "crack" was released in a cloud of smoke that was absorbed by the flies.

In response to low doses of cocaine, the flies continuously groomed themselves. With higher cocaine levels, they walked backward, sideways, and in circles. At the highest doses, the flies developed tremors, paralysis, or even died.

When flies were repeatedly exposed to cocaine given at intervals, they exhibited more severe responses. Such sensitization, or "reverse tolerance," also occurs in rodents and humans and may underlie the paranoia and pyschosis seen in long-time cocaine addicts. It is the opposite of what occurs in response to other drugs, such as opiates and alcohol, for which increasingly larger doses are required to induce the same effects.

Dr. Hirsh and Ms. McClung are already beginning to examine the genetic basis of cocaine sensitization in fruit flies. One method they are using is to select from vast collections of mutant flies those that respond differently to cocaine. By comparing the genes of these flies with those of normal flies, they hope to reveal the genetic and biochemical pathways involved in cocaine-induced behavior and addiction. These insights may lead to better treatments for cocaine addiction.


Story Source:

The above story is based on materials provided by NIH-National Institute Of General Medical Sciences. Note: Materials may be edited for content and length.


Cite This Page:

NIH-National Institute Of General Medical Sciences. "Fruit Flies May Shed Light On Cocaine Addiction." ScienceDaily. ScienceDaily, 19 January 1998. <www.sciencedaily.com/releases/1998/01/980119072710.htm>.
NIH-National Institute Of General Medical Sciences. (1998, January 19). Fruit Flies May Shed Light On Cocaine Addiction. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/1998/01/980119072710.htm
NIH-National Institute Of General Medical Sciences. "Fruit Flies May Shed Light On Cocaine Addiction." ScienceDaily. www.sciencedaily.com/releases/1998/01/980119072710.htm (accessed August 20, 2014).

Share This




More Mind & Brain News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Do More Wedding Guests Make A Happier Marriage?

Do More Wedding Guests Make A Happier Marriage?

Newsy (Aug. 20, 2014) — A new study found couples who had at least 150 guests at their weddings were more likely to report being happy in their marriages. Video provided by Newsy
Powered by NewsLook.com
Charter Schools Alter Post-Katrina Landscape

Charter Schools Alter Post-Katrina Landscape

AP (Aug. 20, 2014) — Nine years after Hurricane Katrina, charter schools are the new reality of public education in New Orleans. The state of Louisiana took over most of the city's public schools after the killer storm in 2005. (Aug. 20) Video provided by AP
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Kids' Drawings At Age 4 Linked To Intelligence At Age 14

Kids' Drawings At Age 4 Linked To Intelligence At Age 14

Newsy (Aug. 19, 2014) — A study by King's College London says there's a link between how well kids draw at age 4 and how intelligent they are later in life. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins