Featured Research

from universities, journals, and other organizations

Seeking Perfection: Cornell Researcher Aims To Make Mirror Surfaces With Nary An Atom Exposed

Date:
March 23, 1998
Source:
Cornell University
Summary:
Melissa Hines is a researcher in search of perfection. Her goal is a mirror surface on which not even a single atom is protruding above the surface.

ITHACA, N.Y. -- Melissa Hines is a researcher in search of perfection. Her goal is a mirror surface on which not even a single atom is protruding above the surface.

"There is no theoretical reason why you can't make things that are perfect," says Hines, an assistant professor of chemistry at Cornell University. "It was once thought there were no mechanisms for perfection." But within the next five years she expects researchers to be able to produce silicon surfaces that "are essentially totally flat."

Hines described her work in understanding perfection at the annual meeting of the American Physical Society in Los Angeles today (March 18). On April 1 she and her Cornell colleagues will address scientists at the annual national meeting of the American Chemical Society in Dallas.

Hines' research, which she began as a postdoctoral student at Bell Labs, is of great economic importance to the semiconductor industry because surface roughness, even on the atomic scale, can greatly decrease the performance of a transistor. "As we go down to smaller and smaller devices, roughness becomes a larger and larger problem," Hines says .

The possibility of surface perfection was serendipitously discovered about five years ago when Bell Labs researchers sought a new method of removing dust from the silicon wafers used to produce integrated circuits. The old method, developed in the 1960s, involves washing the silicon wafers in basic peroxide baths. But today's much smaller circuitry develops atomic-scale roughness from the chemical, significantly reducing the transistor's performance.

But by changing the acidity and composition of the chemical solution the researchers discovered they were able to produce small areas on the silicon surface that were totally flat, even at the atomic level. In fact the surface roughness was equal to only one protruding atom out of every 30,000 surface atoms.

However, this perfection is only reproducible on one type of silicon surface, called silicon (111), which is a different plane from the silicon (100) used for integrated circuits. Thus, says Hines, the goal of research is to find chemical solutions that will produce perfection on different surfaces. To do this, she says, it must first be understood how the chemicals used in her research, a basic hydrofluoric acid solution, etch away protruding atoms. "At this point we know what is going on," she says. "Next we have to change the chemistry to control the reactions. I'm completely convinced this is possible."

The most perfect surface Hines and her colleagues have achieved to date appears through the electron tunneling microscope as a series of steps, with every step only a single atom high. The steps are the result of almost imperceptible errors in cutting the silicon wafer. Because of the chemical action, each step is evenly spaced and almost straight.

Another dramatic example of surface chemistry is the production of equilateral triangles. In this case, the chemicals appear to burrow into small defects on the silicon surface, each a few atoms across, and then open the defects out into triangles about 1,000 atoms across. The bottom of each triangle is perfectly flat. "This had us confused for a very long time," says Hines. "It turns out there is an atomic defect in the crystal that is very reactive. When etched, the atomic structure becomes triangular."

Hines marvels at the chemical reactions that produce both the flat surfaces and the triangles. In both cases, the chemicals etch away surface atoms, one atom at a time, in a very precise order. She calls the process "unzipping," because neighboring atoms are etched in a sequential fashion in much the same way that teeth in a zipper are sequentially opened. It is this type of reaction that Hines is seeking to control in her quest for perfect surfaces.

Click here for a quicktime movie (3.1 MB) of a scanning tunneling microscope view of the process.)

The technique has many uses, she says. In addition to integrated circuit technology, the chemistry would be useful in micromachining of very small parts in which nanoscale control of manufacturing is essential. These chemistries, Hines says, could be applied not only to etching patterns in material but also to applying thin films.

"The nice thing about chemistry is that it does all this automatically," she says. "It's not as if you had to build a machine that removes one atom at a time. The chemistry has this built in."

The title of Hines' talk at the American Physical Society is "Towards chemical control of surface morphology: Aqueous etching of silicon." The title of her talk at the American Chemical Society is "The unexpected role of etchant diffusion in autocatalytic etching of Si(111)." Her collaborators in the Cornell chemistry department are Yi-Chiau Huang, Jaroslav Flidr and Theresa A. Newton.

This work was supported by the Beckman Young Investigator Program and by the National Science Foundation.


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University. "Seeking Perfection: Cornell Researcher Aims To Make Mirror Surfaces With Nary An Atom Exposed." ScienceDaily. ScienceDaily, 23 March 1998. <www.sciencedaily.com/releases/1998/03/980323073919.htm>.
Cornell University. (1998, March 23). Seeking Perfection: Cornell Researcher Aims To Make Mirror Surfaces With Nary An Atom Exposed. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/1998/03/980323073919.htm
Cornell University. "Seeking Perfection: Cornell Researcher Aims To Make Mirror Surfaces With Nary An Atom Exposed." ScienceDaily. www.sciencedaily.com/releases/1998/03/980323073919.htm (accessed July 26, 2014).

Share This




More Matter & Energy News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins