Featured Research

from universities, journals, and other organizations

Research Indicates Molecule Sabotage May Slow Brain Cancer

Date:
March 26, 1998
Source:
Society For Neuroscience
Summary:
For the first time, researchers have found that a particularly lethal form of brain cancer tramples through healthy tissue with the help of a tumor-specific molecule. They hope that methods that can debilitate the molecule, brain-enriched hyaluronan binding protein (BEHAB), will slow the progression of the disease.

WASHINGTON, D.C. -- For the first time, researchers have found that a particularly lethal form of brain cancer tramples through healthy tissue with the help of a tumor-specific molecule. They hope that methods that can debilitate the molecule, brain-enriched hyaluronan binding protein (BEHAB), will slow the progression of the disease.

"The experiments show that BEHAB appears to be a strong, central factor in the movement of brain cancer cells into healthy brain tissue," says neurobiology professor and lead author of the study, Susan Hockfield, PhD, of Yale University School of Medicine. "The work raises new therapeutic possibilities for the brain cancer tumors known as gliomas, which are often fatal."

Hockfield's study, funded by the National Institutes of Health, is published in the April 1 issue of The Journal of Neuroscience.

"The work is exciting because it advances our basic understanding of how glioma cells invade healthy brain tissue and provides a new animal model that can be used to evaluate future therapies," says Lois Lampson, PhD, an expert on brain tumor biology and an associate neurology professor at Brigham and Women's Hospital and Harvard Medical School. "The research opens new paths for both basic understanding and pre-clinical research."

Each year, approximately 20,000 Americans find out they have a glioma. More than half die within 18 months because the tumors often outsmart conventional treatments, such as surgery.

Gliomas arise from brain support cells called glia. The cells grow furiously until they form a mass known as a tumor. "Gliomas are exceptionally difficult to treat because their cells have an unusual ability to travel long distances through normal brain tissue and set up new tumors," says Hockfield.

"One approach to controlling the cancer would be to block the glioma cells' ability to travel, without harming healthy cells." BEHAB, also known as brevican, appears to be a prime candidate for this type of therapy because it exists in glioma tumors, but not in other kinds of brain tumors or tissue in the body, according to the scientists.

In the new study, the researchers found that BEHAB must be secreted by the tumor cells and cut in half, in order for the cancer to move and invade healthy tissue. The research was carried out on newly developed rodent brain tumor models and rodent brain tumor cell lines with genetic engineering techniques.

"Therapies that block the function of BEHAB or reduce the tumor cells' ability to make the protein, may slow tumor progression," says Hockfield. "Moreover, blocking the enzymes that cut BEHAB in half also may be an effective therapy."

In future work, the scientists plan to test the protein's value as a therapy component. They hope to find methods to block BEHAB's overall function, to reduce its production, and to inhibit its division.

Hockfield is a member of the Society for Neuroscience, an organization of more than 27,000 basic scientists and clinicians who study the brain and nervous system. The Society publishes The Journal of Neuroscience.


Story Source:

The above story is based on materials provided by Society For Neuroscience. Note: Materials may be edited for content and length.


Cite This Page:

Society For Neuroscience. "Research Indicates Molecule Sabotage May Slow Brain Cancer." ScienceDaily. ScienceDaily, 26 March 1998. <www.sciencedaily.com/releases/1998/03/980326081416.htm>.
Society For Neuroscience. (1998, March 26). Research Indicates Molecule Sabotage May Slow Brain Cancer. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/1998/03/980326081416.htm
Society For Neuroscience. "Research Indicates Molecule Sabotage May Slow Brain Cancer." ScienceDaily. www.sciencedaily.com/releases/1998/03/980326081416.htm (accessed August 28, 2014).

Share This




More Health & Medicine News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mini Pacemaker Has No Wires

Mini Pacemaker Has No Wires

Ivanhoe (Aug. 27, 2014) Cardiac experts are testing a new experimental device designed to eliminate major surgery and still keep the heart on track. Video provided by Ivanhoe
Powered by NewsLook.com
After Cancer: Rebuilding Breasts With Fat

After Cancer: Rebuilding Breasts With Fat

Ivanhoe (Aug. 27, 2014) More than 269 million women are diagnosed with breast cancer each year. Many of them will need surgery and radiation, but there’s a new simple way to reconstruct tissue using a patient’s own fat. Video provided by Ivanhoe
Powered by NewsLook.com
Blood Clots in Kids

Blood Clots in Kids

Ivanhoe (Aug. 27, 2014) Every year, up to 200,000 Americans die from a blood clot that travels to their lungs. You’ve heard about clots in adults, but new research shows kids can get them too. Video provided by Ivanhoe
Powered by NewsLook.com
Radio Waves Knock out Knee Pain

Radio Waves Knock out Knee Pain

Ivanhoe (Aug. 27, 2014) Doctors have used radio frequency ablation or RFA to reduce neck and back pain for years. But now, that same technique is providing longer-term relief for patients with severe knee pain. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins