Featured Research

from universities, journals, and other organizations

"Noisy" Ventilators Are Better Ventilators

Date:
May 19, 1998
Source:
Boston University
Summary:
Physicians have long known that putting a patient with compromised breathing onto a ventilator is a double-edged sword. While the mechanical device undeniably prolongs life by breathing for the patient, it also can damage delicate lung tissue, and over time the ventilator's effectiveness in delivering oxygen to the blood may be considerably diminished.

(Boston, Mass.) -- Physicians have long known that putting a patient with compromised breathing onto a ventilator is a double-edged sword. While the mechanical device undeniably prolongs life by breathing for the patient, it also can damage delicate lung tissue, and over time the ventilator's effectiveness in delivering oxygen to the blood may be considerably diminished.

In this week's edition of Nature, scientists at Boston University's Department of Biomedical Engineering report a new model of ventilator assisted lung function. In this model the pressure of the air delivered by the ventilator is varied by the addition of "noise," a random amount of additional air pressure which varies from breath to breath. This approach was first used by scientists at the University of Manitoba.

Based on new computer simulations developed at Boston University, the scientists now believe that the "noisy" ventilator not only has the potential to improve gas exchange in patients with lung injury but it may also minimize additional trauma.

Suki and his colleagues at Boston University developed a computer model of lung injury in which large regions of the lung are collapsed. They found that during inhalation, collapsed regions of the lung tend to open in a burst, or avalanche, with large groups of airways and alveoli popping open simultaneously, suddenly increasing the alveolar surface area available for gas exchange. They found that by varying the pressure of the air delivered by the ventilator -- adding "noise" to the base air pressure -- this avalanche-like opening of the airways and alveoli was enhanced and gas exchange was improved.

Furthermore, the scientists discovered there is an optimum amount of noise. Too much variability may lead to barotrauma (high pressure induced lung injury) while too little noise may have no effect at all.

This phenomenon is similar to noise-enhanced amplification of a useful signal via stochastic resonance, an effect that can be found in many neuronal systems. "We believe understanding the mechanism underlying this new mode of ventilation is important," says Suki, "because using the concept of stochastic resonance will allow us to optimize ventilation strategy for each individual." Suki and his colleagues are now testing this model on animals with promising preliminary results.


Story Source:

The above story is based on materials provided by Boston University. Note: Materials may be edited for content and length.


Cite This Page:

Boston University. ""Noisy" Ventilators Are Better Ventilators." ScienceDaily. ScienceDaily, 19 May 1998. <www.sciencedaily.com/releases/1998/05/980519073406.htm>.
Boston University. (1998, May 19). "Noisy" Ventilators Are Better Ventilators. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/1998/05/980519073406.htm
Boston University. ""Noisy" Ventilators Are Better Ventilators." ScienceDaily. www.sciencedaily.com/releases/1998/05/980519073406.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins