Featured Research

from universities, journals, and other organizations

CU Team Develops New Techniques For Repair Of Bone And Cartilage

Date:
July 30, 1998
Source:
University Of Colorado At Boulder
Summary:
A University of Colorado at Boulder chemical engineering team has developed new techniques and materials that show promise for faster healing of severe bone fractures and the regeneration of cartilage in ailing joints.

A University of Colorado at Boulder chemical engineering team has developed new techniques and materials that show promise for faster healing of severe bone fractures and the regeneration of cartilage in ailing joints.

The process involves the use of ultraviolet light to create repeating chains of complex molecules called polymers into putty-like, three-dimensional "scaffolds" that can be implanted into areas of bone or cartilage injury, said Assistant Professor Kristi Anseth of chemical engineering. Although the process has been used in fields like fiber optics, this is the first application of photopolymerization for medical bone and joint problems.

In the case of bone, a new class of polymer developed by Anseth and her team of graduate students acts as scaffolding as it is placed inside a severe fracture or in the cavity where a bone tumor was removed. As the bone heals, the customized substance -- which degrades over time like a bar of soap -- can be engineered to time-release medications and human-growth factors to aid in the healing process, said Anseth, the project director.

The new bone-healing process, patented by Anseth several years ago through CU and licensed by a major Midwest biotechnology company, has shown promise in animal studies, she said. The advantages to making polymers with UV light are that they can be created at any temperature, the reactions occur quickly, the process can be easily turned on and off, and the polymer material can be applied in small, targeted areas using laser beams.

"A common procedure to treat severe fractures is the use of screws and plates," said Anseth. "But our degradable polymers form a bone-like material that maintains its strength as it degrades, eliminating the problem of weaker and more porous bones and the necessity for second surgeries."

Research results "have been encouraging," she said. "But we will have to wait at least a year to see how effective this method is."

The creation of new polymers to treat cartilage damage in joints is a more difficult problem because cartilage does not have the capacity to heal itself like bone, said Anseth. As a result, she and her team have developed a liquid solution to make polymer scaffolds by using light to form gels that are more elastic than bone polymer material.

They first suspend cartilage-forming cells, called chondrocytes, in a liquid solution, then use a UV light laser beam to convert the liquid to a gel. The resulting polymer, based on polyethylene glycol, has been modified by the CU team to make it degradable over time as the chondrocytes multiply.

"Cartilage is a tissue easier to engineer than organs and other tissues," she said. "Our method makes an elastic "hydrogel" that allows cartilage to form, then subsequently degrades. But the problem still remains that tissue-engineered cartilage is not as strong as natural cartilage in the human body."

Plastic surgeons at Massachusetts General Hospital in Boston have used Anseth's technique on animal models, but have not yet been able to create strong enough cartilage polymers to withstand joint stresses.

While the bone-polymer scaffolding resembles a small, tight mesh of repeating chemical sequences, the cartilage polymer scaffolding made of the same repeating sequences has larger pores to let in more water and sustain the cartilage's pliability, she said.

"The days of using off-the-shelf polymers for processes like these are gone," said Anseth. "We now have the ability to design material so that it behaves exactly as we intend it to."

Anseth's recent research has been promising enough to earn her a prestigious David and Lucille Packard Fellowship for $500,000 over five years, a National Institutes of Health FIRST Award for $500,000 over five years and a $210,000 Career Award from the National Science Foundation.


Story Source:

The above story is based on materials provided by University Of Colorado At Boulder. Note: Materials may be edited for content and length.


Cite This Page:

University Of Colorado At Boulder. "CU Team Develops New Techniques For Repair Of Bone And Cartilage." ScienceDaily. ScienceDaily, 30 July 1998. <www.sciencedaily.com/releases/1998/07/980730052154.htm>.
University Of Colorado At Boulder. (1998, July 30). CU Team Develops New Techniques For Repair Of Bone And Cartilage. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/1998/07/980730052154.htm
University Of Colorado At Boulder. "CU Team Develops New Techniques For Repair Of Bone And Cartilage." ScienceDaily. www.sciencedaily.com/releases/1998/07/980730052154.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins