Featured Research

from universities, journals, and other organizations

CU Team Develops New Techniques For Repair Of Bone And Cartilage

Date:
July 30, 1998
Source:
University Of Colorado At Boulder
Summary:
A University of Colorado at Boulder chemical engineering team has developed new techniques and materials that show promise for faster healing of severe bone fractures and the regeneration of cartilage in ailing joints.

A University of Colorado at Boulder chemical engineering team has developed new techniques and materials that show promise for faster healing of severe bone fractures and the regeneration of cartilage in ailing joints.

Related Articles


The process involves the use of ultraviolet light to create repeating chains of complex molecules called polymers into putty-like, three-dimensional "scaffolds" that can be implanted into areas of bone or cartilage injury, said Assistant Professor Kristi Anseth of chemical engineering. Although the process has been used in fields like fiber optics, this is the first application of photopolymerization for medical bone and joint problems.

In the case of bone, a new class of polymer developed by Anseth and her team of graduate students acts as scaffolding as it is placed inside a severe fracture or in the cavity where a bone tumor was removed. As the bone heals, the customized substance -- which degrades over time like a bar of soap -- can be engineered to time-release medications and human-growth factors to aid in the healing process, said Anseth, the project director.

The new bone-healing process, patented by Anseth several years ago through CU and licensed by a major Midwest biotechnology company, has shown promise in animal studies, she said. The advantages to making polymers with UV light are that they can be created at any temperature, the reactions occur quickly, the process can be easily turned on and off, and the polymer material can be applied in small, targeted areas using laser beams.

"A common procedure to treat severe fractures is the use of screws and plates," said Anseth. "But our degradable polymers form a bone-like material that maintains its strength as it degrades, eliminating the problem of weaker and more porous bones and the necessity for second surgeries."

Research results "have been encouraging," she said. "But we will have to wait at least a year to see how effective this method is."

The creation of new polymers to treat cartilage damage in joints is a more difficult problem because cartilage does not have the capacity to heal itself like bone, said Anseth. As a result, she and her team have developed a liquid solution to make polymer scaffolds by using light to form gels that are more elastic than bone polymer material.

They first suspend cartilage-forming cells, called chondrocytes, in a liquid solution, then use a UV light laser beam to convert the liquid to a gel. The resulting polymer, based on polyethylene glycol, has been modified by the CU team to make it degradable over time as the chondrocytes multiply.

"Cartilage is a tissue easier to engineer than organs and other tissues," she said. "Our method makes an elastic "hydrogel" that allows cartilage to form, then subsequently degrades. But the problem still remains that tissue-engineered cartilage is not as strong as natural cartilage in the human body."

Plastic surgeons at Massachusetts General Hospital in Boston have used Anseth's technique on animal models, but have not yet been able to create strong enough cartilage polymers to withstand joint stresses.

While the bone-polymer scaffolding resembles a small, tight mesh of repeating chemical sequences, the cartilage polymer scaffolding made of the same repeating sequences has larger pores to let in more water and sustain the cartilage's pliability, she said.

"The days of using off-the-shelf polymers for processes like these are gone," said Anseth. "We now have the ability to design material so that it behaves exactly as we intend it to."

Anseth's recent research has been promising enough to earn her a prestigious David and Lucille Packard Fellowship for $500,000 over five years, a National Institutes of Health FIRST Award for $500,000 over five years and a $210,000 Career Award from the National Science Foundation.


Story Source:

The above story is based on materials provided by University Of Colorado At Boulder. Note: Materials may be edited for content and length.


Cite This Page:

University Of Colorado At Boulder. "CU Team Develops New Techniques For Repair Of Bone And Cartilage." ScienceDaily. ScienceDaily, 30 July 1998. <www.sciencedaily.com/releases/1998/07/980730052154.htm>.
University Of Colorado At Boulder. (1998, July 30). CU Team Develops New Techniques For Repair Of Bone And Cartilage. ScienceDaily. Retrieved January 31, 2015 from www.sciencedaily.com/releases/1998/07/980730052154.htm
University Of Colorado At Boulder. "CU Team Develops New Techniques For Repair Of Bone And Cartilage." ScienceDaily. www.sciencedaily.com/releases/1998/07/980730052154.htm (accessed January 31, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, January 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

CDC: Get Vaccinated for Measles

CDC: Get Vaccinated for Measles

Reuters - US Online Video (Jan. 30, 2015) The CDC is urging people to get vaccinated for measles amid an outbreak that began at Disneyland and has now infected more than 90 people. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Obama To Outline New Plan For Personalized Medicine

Obama To Outline New Plan For Personalized Medicine

Newsy (Jan. 30, 2015) President Obama is expected to speak with drugmakers Friday about his Precision Medicine Initiative first introduced last week. Video provided by Newsy
Powered by NewsLook.com
NFL Concussions Down; Still on Parents' Minds

NFL Concussions Down; Still on Parents' Minds

AP (Jan. 30, 2015) The NFL announced this week that the number of game concussions dropped by a quarter over last season. Still, the dangers of the sport still weigh on players, and parents&apos; minds. (Jan. 30) Video provided by AP
Powered by NewsLook.com
U.S. Wants to Analyze DNA from 1 Million People

U.S. Wants to Analyze DNA from 1 Million People

Reuters - US Online Video (Jan. 30, 2015) The U.S. has proposed analyzing genetic information from more than 1 million American volunteers to learn how genetic variants affect health and disease. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins