Featured Research

from universities, journals, and other organizations

Scientists Succeed In Inserting Gene In Human Cells Via Artificial Chromosome

Date:
September 1, 1998
Source:
University Of North Carolina At Chapel Hill
Summary:
Using a promising new technique, University of North Carolina at Chapel Hill scientists have for the first time successfully inserted large circular plasmids - doughnut-shaped pieces of DNA containing healthy genes - into human cells and showed the genes functioned as if they belonged there. After more than a year, the genes continued to operate normally.

CHAPEL HILL--Using a promising new technique, University of North Carolina at Chapel Hill scientists have for the first time successfully inserted large circular plasmids - doughnut-shaped pieces of DNA containing healthy genes - into human cells and showed the genes functioned as if they belonged there. After more than a year, the genes continued to operate normally.

The work is important, researchers say, because it may offer a more effective method of transferring healthy genes into humans with various illnesses such as hemophilia, cystic fibrosis and sickle cell anemia and improve treatment.

"We have been able to do this with a piece of DNA five to 20 times the usual size scientists work with," said Dr. Jean Michel Vos, associate professor of biochemistry at the UNC-CH School of Medicine. "Although so far we have worked only in cultured human cells in the laboratory, we believe it could eventually work well directly in humans. It is exciting and very promising."

A report on the research appears in the September issue of Human Gene Therapy, a scientific journal. Besides Vos, authors are Drs. Eva Maria Westphal, postdoctoral fellow in medicine; Halina Sierakowska, postdoctoral fellow in biochemistry; and Ryszard Kole, associate professor of pharmacology; and technician Elisabeth Livanos, all of the UNC Lineberger Comprehensive Cancer Center.

Researchers transferred genes responsible for producing Beta-globin, one of two chief components of hemoglobin, the large molecule that carries oxygen in blood. Each time their cultured human cells divided, the genes replicated, or reproduced, as well and functioned for more than a year.

"You can think of it as an artificial chromosome," Vos said. "It does not become part of any of the 46 original chromosomes in each cell nucleus by inserting itself into them, but it is in addition to them."

In collaboration with Kole's laboratory, Vos and Westphal also showed the genes to be active, going from double-stranded DNA to single strands of RNA, the first step toward production of protein, which is the genes' purpose. DNA and RNA are like molecular blueprints for protein production.

Bacteria first are used, like little factories, to clone DNA outside the human cells because bacteria take only an hour to reproduce rather than the 24 hours human cells require.

The scientists then attach the DNA in circular form to a harmless part of the Epstein-Barr virus because of the virus' ability to replicate and maintain itself in the nucleus of human cells. The virus serves as a vector, or carrier, of the human genes, something like attaching a locomotive to freight cars to take them where they are needed.

By creating separate, artificial chromosomes, researchers no longer have to worry about genes they are transferring attaching randomly to parts of other chromosomes and then not working independently, Westphal said. The circular design promotes strength and stability because linear forms have a greater tendency to break inside the cell nucleus.

"I want to stress that this work is not a gene therapy cure for any disease yet, but I do think it is a major technical step forward," Vos said. "It moves the field from working with shrunken versions of human genes to entire functioning genes. We have shown the genes function and function for a long time."

Three years ago, Vos and colleagues published a paper in Nature Genetics suggesting it would be possible to build a circular artificial chromosome. In August they published another paper in Nature Biotechnology showing how to build artificial chromosomes in mouse cells, a step before doing it in whole animals.

The U.S. Department of Energy and the Bayer Corp. supported the research, along with help from faculty and staff at the Roosevelt Park Cancer Center in Buffalo, N.Y., the Murdoch Institute in Melbourne, Australia, and Glaxo-Wellcome in Research Triangle Park.

By David Williamson


Story Source:

The above story is based on materials provided by University Of North Carolina At Chapel Hill. Note: Materials may be edited for content and length.


Cite This Page:

University Of North Carolina At Chapel Hill. "Scientists Succeed In Inserting Gene In Human Cells Via Artificial Chromosome." ScienceDaily. ScienceDaily, 1 September 1998. <www.sciencedaily.com/releases/1998/09/980901025047.htm>.
University Of North Carolina At Chapel Hill. (1998, September 1). Scientists Succeed In Inserting Gene In Human Cells Via Artificial Chromosome. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/1998/09/980901025047.htm
University Of North Carolina At Chapel Hill. "Scientists Succeed In Inserting Gene In Human Cells Via Artificial Chromosome." ScienceDaily. www.sciencedaily.com/releases/1998/09/980901025047.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Liberia Pleads for Help to Fight Ebola

Liberia Pleads for Help to Fight Ebola

AP (Sep. 22, 2014) Liberia's finance minister is urging the international community to quickly follow through on pledges of cash to battle Ebola. Bodies are piling up in the capital Monrovia as the nation awaits more help. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Ebola Doctor Says Border Controls Critical

Ebola Doctor Says Border Controls Critical

AP (Sep. 22, 2014) A Florida doctor who helped fight the expanding Ebola outbreak in West Africa says the disease can be stopped, but only if nations quickly step up their response and make border control a priority. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Global Ebola Aid Increasing But Critics Say It's Late

Global Ebola Aid Increasing But Critics Say It's Late

Newsy (Sep. 21, 2014) More than 100 tons of medical supplies were sent to West Africa on Saturday, but aid workers say the global response is still sluggish. Video provided by Newsy
Powered by NewsLook.com
Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins