Featured Research

from universities, journals, and other organizations

What's In A Species? Maybe A Cure For Malaria

Date:
December 17, 1998
Source:
University Of Texas Medical Branch
Summary:
Scientists who classify animals often debate whether certain differences between two populations' behavior, anatomy or biochemistry are great enough to distinguish those populations as different species. While those discussions often dance around the edges of abstract theory, a new study of African mosquitoes removes an important obstacle to a distinctly practical, if far-off, proposition: that scientists could eradicate malaria by making mosquitoes genetically incapable of transmitting this deadly disease.

GALVESTON, Texas-Scientists who classify animals often debate whether certain differences between two populations' behavior, anatomy or biochemistry are great enough to distinguish those populations as different species. While those discussions often dance around the edges of abstract theory, a new study of African mosquitoes removes an important obstacle to a distinctly practical, if far-off, proposition: that scientists could eradicate malaria by making mosquitoes genetically incapable of transmitting this deadly disease.

Related Articles


Genetic analysis conducted at the University of Texas Medical Branch at Galveston (UTMB) has revealed that two populations of the mosquito Anopheles gambiae-which some scientists had speculated did not interbreed-can actually mate. The findings, which were published in the Nov. 25 issue of the Proceedings of the National Academy of Sciences, is an encouraging sign for researchers trying to find ways to genetically manipulate mosquitoes, making them incapable of carrying or transmitting the parasite that causes malaria.

Malaria afflicts between 100 million and 300 million people in the world each year, and it kills between two and three million people. It is transmitted by about 60 different kinds of mosquito. A. gambiae carries the most deadly form of malaria parasite, Plasmodium falciparum, which causes more than 95 percent of all malaria deaths. In conventional terms, A. gambiae is considered a species-that is, a group of organisms that only breeds with its own members and not with members of other species.

However, scientists studying the genetic composition of A. gambiae recently noticed something remarkable about certain populations of this mosquito. Living in the same villages-and biting the same people-are up to three groups of A. gambiae that have very different genetic profiles. One explanation for those different genetic make-ups is that the mosquitoes don't interbreed. The implication: In the ongoing process whereby organisms evolve, these three mosquito populations are on their way to becoming-or may already have become-different species.

That theory, though never directly tested, cast a cloud over a pipe dream held by a small group of scientists, including Greg Lanzaro, a medical entomologist and member of UTMB's World Health Organization Collaborating Center for Tropical Diseases. Lanzaro and about two dozen other researchers in the United States and elsewhere are busy working on separate aspects of a complicated and admittedly long-shot proposal. Following successful genetically based campaigns to wipe out other human-related scourges such as the cattle-destroying screwworm, the scientists would like to genetically engineer mosquitoes that couldn't carry or transmit malaria. Once designed, those mosquitoes could be introduced into environments where malaria-carrying mosquitoes reside, replacing the natural, more hazardous bugs with harmless ones.

Since the malaria parasite must live in and be transmitted by mosquitoes before it can cause disease in humans, the genetic approach would interrupt the normal disease cycle. The new plan would be an alternative to other malaria-control approaches, including the now-troublesome practice of using insecticides to kill malaria-carrying mosquitoes, many of which have become resistant to the pesticides. Scientists also hope the new approach will prove more successful than the long-unfruitful search for a malaria vaccine.

Taking some of the first steps toward the goal of genetic control, molecular biologists at New York and Duke universities and at the National Institutes of Health have identified at least two naturally occurring characteristics that make some mosquitoes unable to transmit malaria. They are now working to identify the genes that control those biological processes. Meanwhile, other scientists at the University of California at Irvine are having preliminary success at figuring out how to introduce chosen genes into mosquitoes, which have proven harder to manipulate than other, more engineering-friendly animals such as fruitflies and mice.

But for whole proposal to work, scientists have to find a way to get genes to move from a relatively small population of introduced mosquitoes into millions of naturally occurring bugs. For that to happen, the mosquitoes need to interbreed.

For example, three genetically distinct populations-known by the names Bamako, Mopti and Savannah-live in many West African villages, including some located along the Niger River in Mali, a country near Africa's northwestern coast.

"If the three populations were separate species," says Lanzaro, "and you introduced a gene into one of them, then the gene would only be passed to, say, a third of the mosquitoes in that area. The rest of the mosquitoes, being unable to mix their genes through breeding, would still be genetically capable of transmitting the disease."

By collecting female mosquitoes in several Malian villages and analyzing their genetic make-up, Lanzaro and his colleagues at the Malaria Research and Training Center in Mali have determined that genes appear to move between two of the three existing populations, Bamako and Mopti.

"Those were the two populations that many scientists said didn't interbreed at all," Lanzaro says. "But we're seeing a pattern that suggests there's lots of mating going on."

Those results suggest that, instead of being completely different species, the three populations could be different races of A. gambiae. If that's true, it probably wouldn't matter which mosquito race scientists use to introduce malaria-resistance genes. What matters more, Lanzaro speculates, is where on the insects' chromosomes the scientists place whatever genes they eventually decide to use.

"We're laying the groundwork for the final stages of this plan," says Lanzaro. "It may take us 20 years to get there, but if the plan works, millions of people could be free from a scourge that has plagued human beings for centuries."


Story Source:

The above story is based on materials provided by University Of Texas Medical Branch. Note: Materials may be edited for content and length.


Cite This Page:

University Of Texas Medical Branch. "What's In A Species? Maybe A Cure For Malaria." ScienceDaily. ScienceDaily, 17 December 1998. <www.sciencedaily.com/releases/1998/12/981217074441.htm>.
University Of Texas Medical Branch. (1998, December 17). What's In A Species? Maybe A Cure For Malaria. ScienceDaily. Retrieved April 25, 2015 from www.sciencedaily.com/releases/1998/12/981217074441.htm
University Of Texas Medical Branch. "What's In A Species? Maybe A Cure For Malaria." ScienceDaily. www.sciencedaily.com/releases/1998/12/981217074441.htm (accessed April 25, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, April 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

85 Killed in Niger by Meningitis Since Start of Year

85 Killed in Niger by Meningitis Since Start of Year

AFP (Apr. 24, 2015) A meningitis outbreak in Niger has killed 85 people since the start of the year prompting authorities to close schools in the capital Niamey until Monday. Video provided by AFP
Powered by NewsLook.com
C-Section Births a Trend in Brazil

C-Section Births a Trend in Brazil

AFP (Apr. 24, 2015) More than half of Brazil&apos;s babies are born via cesarean section, as mothers and doctors opt for a faster and less painful experience despite the health risks. Duration: 02:02 Video provided by AFP
Powered by NewsLook.com
Anti-Malaria Jab Hope

Anti-Malaria Jab Hope

Reuters - News Video Online (Apr. 24, 2015) The world&apos;s first anti-malaria vaccine could get the go-ahead for use in Africa from October if approved by international regulators. Paul Chapman reports. Video provided by Reuters
Powered by NewsLook.com
3D Food Printing: The Meal of the Future?

3D Food Printing: The Meal of the Future?

AP (Apr. 23, 2015) Developers of 3D food printing hope the culinary technology will revolutionize the way we cook and eat. (April 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins