Featured Research

from universities, journals, and other organizations

Computer Simulation Reveals Nano-Switch That Activates Cell-Binding Function Of Key Protein In The Body

Date:
February 18, 1999
Source:
University Of Washington
Summary:
Flipping a nano-scale molecular switch may regulate the cell-binding function of a protein involved in healing and other fundamental biological activities. Computer simulations show that, like untying a shoelace, tugging on a strand of the protein fibronectin unravels a loop critical to cell recognition but otherwise leaves the protein intact for reactivation.

Flipping a nano-scale molecular switch may regulate the cell-binding function of a protein involved in healing and other fundamental biological activities. Computer simulations show that, like untying a shoelace, tugging on a strand of the protein fibronectin unravels a loop critical to cell recognition but otherwise leaves the protein intact for reactivation.

Related Articles


Reporting in the Feb. 16 issue of the Proceedings of the National Academy of Sciences, researchers at the University of Washington and the University of Illinois at Urbana-Champaign describe this as the first illustration of how the body may use tension-activated switch mechanisms to regulate biological function.

"Understanding how nature has evolved these systems gives us insight into basic cell biology as well as elegant design principles for mechanical switches in biotechnology devices," says senior author Viola Vogel, associate professor of bioengineering and director of the Center for Nanotechnology at the UW. "Since nano-scale tools have only recently been developed for analyzing the mechanics of single molecules, we are entering a new era of understanding how molecular mechanics control biological activity."

Vogel's research, funded by the National Institutes of Health, is particularly interested in fibronectin, a glycoprotein that is a major building block in the cell-surface network known as the extracellular matrix. The extracellular matrix regulates adhesion, communication, gene expression and other interactions between the cell and its environment. Thus, it is of keen interest to scientists studying basic cell biology as well as engineers designing artificial devices to integrate naturally into the body.

Fibronectin is comprised of a chain of repeating modules, only one of which contains the specific RGD tri-peptide loop responsible for cell adhesion. This module - labeled FnIII10 - consists of seven connected beta strands folded back and forth in layers. The cell-binding RGD loop extends above the surface of the molecule from its slot between the last two strands of the module. Curious about why nature had devised such a large and complex molecule to perform a function seemingly controlled by this relatively tiny loop, Vogel sought to unravel its internal mechanical operations.

X-ray diffraction analysis reveals the 3-D structure of individual molecules in exquisite detail. And researchers using atomic force microscopy in concert with optical tweezers can measure the forces required to pull molecules apart. But to discover what is happening inside the molecule as it unfolds, Vogel turned to physics professor Klaus Schulten at the University of Illinois's Beckman Institute for Advanced Science and Technology, who pioneered a set of computational approaches for simulating molecular dynamics. With a 3-D blueprint of a molecule, Schulten's simulations produce detailed pictures of a molecule's structural response to external forces.

Vogel working with Schulten, his graduate student Hui Lu and post-doctoral fellow Barry Isralewitz, simulated the forced unfolding of the muscle protein titin. Results mirrored the forces required to pull apart titin in laboratory experiments, thus verifying the accuracy of the simulation.

Next, the researchers turned their attention to Fibronectin. Vogel's graduate student Andre Krammer essentially instructed the simulation software to tug on the ends of the FnIII10 module. The researchers observed that the module stretched but remained intact until the tension reached a critical threshold. At that point, the bottom strand of the module broke free from the bonds holding it in place and pulled the RGD loop toward the interior of the molecule as it unraveled and straightened out. This suggests that, with the loop no longer exposed, Fibronectin's affinity for cell-binding is effectively switched off. Furthermore, unless additional tension was applied, the module otherwise remained intact during the simulation and, thus, is able to rapidly reassemble and restore its cell-binding affinity.

"Our experiment provides the first atomic-scale description of a tension-activated switch for regulating a protein's cell-binding affinity," Vogel says. "This gives totally new insight into how nature may utilize tension to enable a cell to detach itself from the extracellular matrix and move on. The regulation of cell motility is important in, among other things, the development of embryos, wound healing and metastasis of cancer cells.


Story Source:

The above story is based on materials provided by University Of Washington. Note: Materials may be edited for content and length.


Cite This Page:

University Of Washington. "Computer Simulation Reveals Nano-Switch That Activates Cell-Binding Function Of Key Protein In The Body." ScienceDaily. ScienceDaily, 18 February 1999. <www.sciencedaily.com/releases/1999/02/990218071009.htm>.
University Of Washington. (1999, February 18). Computer Simulation Reveals Nano-Switch That Activates Cell-Binding Function Of Key Protein In The Body. ScienceDaily. Retrieved November 25, 2014 from www.sciencedaily.com/releases/1999/02/990218071009.htm
University Of Washington. "Computer Simulation Reveals Nano-Switch That Activates Cell-Binding Function Of Key Protein In The Body." ScienceDaily. www.sciencedaily.com/releases/1999/02/990218071009.htm (accessed November 25, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, November 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com
Madagascar Working to Contain Plague Outbreak

Madagascar Working to Contain Plague Outbreak

AFP (Nov. 24, 2014) Madagascar said Monday it is trying to contain an outbreak of plague -- similar to the Black Death that swept Medieval Europe -- that has killed 40 people and is spreading to the capital Antananarivo. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins