Featured Research

from universities, journals, and other organizations

Surface Tension May Explain Fingering Patterns In Granular Flows

Date:
April 6, 1999
Source:
University Of Illinois Urbana-Champaign
Summary:
From the orderly flow of sand through an hourglass to the unpredictable nature of an avalanche, the behavior of flowing solids -- or granular flows -- remains, in part, a mystery. One poorly understood characteristic of granular flows is the frequent formation of "fingers" at the leading edge. While some researchers have suggested that these patterns are created by the segregation of coarse, irregularly shaped particles, recent experiments at the University of Illinois have cast serious doubt on the validity of this explanation.

CHAMPAIGN, Ill. -- From the orderly flow of sand through an hourglass to the unpredictable nature of an avalanche, the behavior of flowing solids -- or granular flows -- remains, in part, a mystery.

One poorly understood characteristic of granular flows is the frequent formation of "fingers" at the leading edge. While some researchers have suggested that these patterns are created by the segregation of coarse, irregularly shaped particles, recent experiments at the University of Illinois have cast serious doubt on the validity of this explanation.

"There has to be some other mechanism at work here," said Eliot Fried, a U. of I. professor of theoretical and applied mechanics. "Our results show that even when the medium consists of nearly spherical particles, its leading edge may still develop fingers."

To examine the influence that particle segregation plays on the formation of frontal fingers, Fried and his colleagues -- theoretical and applied mechanics professor Sigurdur Thoroddsen and graduate student Amy Shen -- performed a series of experiments by rotating an acrylic cylinder containing a small amount of granular material around its horizontal axis of symmetry.

For the granular medium, the researchers started with industrial-grade blasting powder -- which consisted of tiny, fairly uniform glass beads. The motion of the granules was recorded on videotape with a CCD (charge-coupled device) camera and then analyzed one frame at a time.

"Initially, there is a stick-slip motion of the layer as a whole, as it is dragged up the rising side of the cylinder to a critical angle where it falls back to the bottom," Fried said. "But as the angular velocity is increased, a wave-motion sets in, which creates a span-wise variation in the thickness of the layer -- visible as bright and dark bands of light transmitted through the granular material. The frontal patterns resemble fingers."

Next, the researchers added some coarse sand to the glass beads. The resulting fingers and wave patterns did not differ substantially from what had been observed with the beads alone.

"Our results clearly demonstrate that fingers can form at the front of a flowing granular medium even in the absence of segregation induced by coarse, irregularly shaped particles," said Fried, who presented his team's findings at the American Physical Society meeting, held March 21-26, in Atlanta. "This suggests that some other mechanism is responsible. " Because the fingering patterns are similar to those seen in conventional viscous fluids, Fried said, the explanation may lie in an effective surface tension generated by cohesive forces between grains. "In fluids, the frontal fingering instability is driven by a competition between viscosity and surface tension," Fried said.

"Although granular media are commonly thought to be incapable of sustaining surface tension, we cannot rule out the possibility that the fingering patterns result from a similar competition between the viscosity of the bulk medium and effective surface tension."


Story Source:

The above story is based on materials provided by University Of Illinois Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois Urbana-Champaign. "Surface Tension May Explain Fingering Patterns In Granular Flows." ScienceDaily. ScienceDaily, 6 April 1999. <www.sciencedaily.com/releases/1999/04/990406043241.htm>.
University Of Illinois Urbana-Champaign. (1999, April 6). Surface Tension May Explain Fingering Patterns In Granular Flows. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/1999/04/990406043241.htm
University Of Illinois Urbana-Champaign. "Surface Tension May Explain Fingering Patterns In Granular Flows." ScienceDaily. www.sciencedaily.com/releases/1999/04/990406043241.htm (accessed August 22, 2014).

Share This




More Matter & Energy News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is It a Plane? No, It's a Hoverbike

Is It a Plane? No, It's a Hoverbike

Reuters - Business Video Online (Aug. 22, 2014) UK-based Malloy Aeronautics is preparing to test a manned quadcopter capable of out-manouvering a helicopter and presenting a new paradigm for aerial vehicles. A 1/3-sized scale model is already gaining popularity with drone enthusiasts around the world, with the full-sized manned model expected to take flight in the near future. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Coal Gas Boom in China Holds Climate Risks

Coal Gas Boom in China Holds Climate Risks

AP (Aug. 22, 2014) China's energy revolution could do more harm than good for the environment, despite the country's commitment to reducing pollution and curbing its carbon emissions. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Newsy (Aug. 21, 2014) Researchers found the scanners could be duped simply by placing a weapon off to the side of the body or encasing it under a plastic shield. Video provided by Newsy
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins