Featured Research

from universities, journals, and other organizations

Discovery: Chromosomes Found To End In Big Loops

Date:
May 17, 1999
Source:
University Of North Carolina At Chapel Hill
Summary:
Scientists at the University of North Carolina at Chapel Hill's Lineberger Comprehensive Cancer Center and Rockefeller University appear to have solved an important and long-standing mystery in cell biology. The puzzle is why cells' internal repair machinery doesn't mistake the ends of chromosomes for broken DNA and either "fix" or destroy them.

CHAPEL HILL - Scientists at the University of North Carolina at Chapel Hill's Lineberger Comprehensive Cancer Center and Rockefeller University appear to have solved an important and long-standing mystery in cell biology. The puzzle is why cells' internal repair machinery doesn't mistake the ends of chromosomes for broken DNA and either "fix" or destroy them.

Working together, the researchers have discovered that mammals' chromosomes end in loops. Under intense magnification, those chromosome ends, or telomeres, look something like lassos.

A report on the findings appears as the cover story in the May 14 issue of the journal Cell. Lead authors are Drs. Jack Griffith, professor of microbiology and immunology at the UNC-CH School of Medicine, and Titia de Lange, professor and head of Rockefeller's Laboratory of Cell Biology and Genetics.

"We think this work is highly important because it should provide a whole new way of thinking about basic molecular mechanisms related to cancer and to control of aging in cells," Griffith said.

Genetic information in cells is stored in 46 long thread-like molecules called DNA, and each is packaged into a rod-shaped structure called a chromosome, he explained. When cells are exposed to X rays or other insults that break DNA molecules, the repair mechanisms stitch the broken ends back together. If too many breaks occur, then a cellular suicide response kicks in, and cells die.

"The question has been why natural chromosome ends, of which there are 92 per cell, do not trigger that response," the scientist said. "We believe we've found the answer."

For the first time, the researchers have produced photographs that show the loops clearly.

"The first clue came from studies by Dr. de Lange's group of one of the proteins they had discovered," said Griffith, whose laboratory employs electron microscopes to investigate the architecture of DNA molecules. "When this particular protein was functionally removed from the cell, the cell suicide response was triggered, which implicated the protein in masking the chromosome ends."

That finding encouraged the Rockefeller and UNC-CH teams to carry out experiments to examine how the protein might arrange DNA molecules containing genetic sequences typical of telomeres, he said. Resulting electron microscope images showed DNA molecules arranged into the lasso-like structures.

"DNA typical of the chromosome end, or telomere, was looped back around and attached to a distant internal site on the DNA and held there by the added protein," Griffith said. "The loop thus formed disguised the DNA end, keeping it cloaked or hidden from the sensors that trigger the cell suicide response."

Researchers then clipped DNA away from the ends of both human and mouse chromosomes, revealing very large loops, he said. While those structures appeared huge in photographs, they measured only 1/3000th of an inch around and comprised only 1/1000th of the chromosomes' total DNA.

Because chromosomes shorten as people age, many scientist believe telomeres play some unexplained central role in the body's lifelong biologic clock, Griffith said. Thus, telomeres may be some kind of regulator of cell death.

"Very rarely these days in science does a new result emerge from ongoing research, loop around, bite you from behind and make you say - Hey!" wrote Dr. Carol Greider of Johns Hopkins University in an accompanying editorial in Cell. "But this is just what has happened in the telomere field... .These results will make us re-think the classical view of telomere function that has emerged over the past 20 years and give a context in which a new synthesis will emerge."

The National Institutes of Health supported the research at both laboratories.


Story Source:

The above story is based on materials provided by University Of North Carolina At Chapel Hill. Note: Materials may be edited for content and length.


Cite This Page:

University Of North Carolina At Chapel Hill. "Discovery: Chromosomes Found To End In Big Loops." ScienceDaily. ScienceDaily, 17 May 1999. <www.sciencedaily.com/releases/1999/05/990517064831.htm>.
University Of North Carolina At Chapel Hill. (1999, May 17). Discovery: Chromosomes Found To End In Big Loops. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/1999/05/990517064831.htm
University Of North Carolina At Chapel Hill. "Discovery: Chromosomes Found To End In Big Loops." ScienceDaily. www.sciencedaily.com/releases/1999/05/990517064831.htm (accessed September 21, 2014).

Share This



More Health & Medicine News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins