Featured Research

from universities, journals, and other organizations

Good News For "Wusses": Research Links Pain Sensitivity To Gene

Date:
July 21, 1999
Source:
Johns Hopkins Medical Institutions
Summary:
People vary greatly in their sensitivity to pain: A tetanus shot's pinprick for one person is another's misery. Now researchers at Johns Hopkins and the National Institute on Drug Abuse (NIDA) report that much of human sensitivity to pain -- and the varied response people have to opiate pain medicines -- has a genetic basis.

People vary greatly in their sensitivity to pain: A tetanus shot's pinprick for one person is another's misery. Now researchers at Johns Hopkins and the National Institute on Drug Abuse (NIDA) report that much of human sensitivity to pain -- and the varied response people have to opiate pain medicines -- has a genetic basis. Many of the differences in pain perception by both mouse and human, the scientists say, are likely due to variation in a single key gene.

Related Articles


In a report in this month's Proceedings of the National Academy of Sciences, the scientists explain why a gene coding for the mu opiate receptor, a molecule that bonds with the body's natural opiates, is the likely candidate for pain sensitivity. This same receptor also forms bonds with morphine, additionally making it a good candidate gene for the differences people experience in pain relief from morphine or morphine-like drugs.

The work should eventually result in pain drugs tailored to a person's individual genetic sensitivities -- a hallmark of genome-based therapy. It also could offer the ability to predict a person's risk of addiction to opiate drugs.

The research involves both mouse and human mu receptor genes. "It's rare to find a gene where the animal evidence for its effect is so strong or has such a clear carryover to human studies," says Hopkins/NIDA neuroscientist George R. Uhl, M.D., Ph.D., who led the study.

The researchers were the first to identify sections of the human and rodent mu receptor gene almost a decade ago. In this new work, they've focused on individual differences in the regulatory parts of the receptor gene in humans and mice -- key areas that control how many mu receptors the gene makes.

Looking at eight different strains of mice, the researchers found links between gene differences in the regulatory area and the numbers of mu receptors mouse tissues displayed. More active forms of the gene meant more receptors cranked out.

Further, the number of receptors predicted how mice would respond to a standard mildly painful stimulus: when Uhl produced mice with half the typical number of opiate receptors, their sensitivity to pain was significantly heightened. Mice with all their mu receptors knocked out were even more sensitive to pain.

Also, mouse strains with lower numbers of receptors required a greater use of morphine.

The human studies trail the mouse ones, says Uhl, but they, too, suggest the same relation between gene variation, numbers of receptors and relief of pain. The researchers pooled their studies of several dozen volunteers from pain or addiction clinics with those from other labs to report on several hundred human mu genes.

They found that the "business end" of the gene -- the part that codes for the actual receptor -- is similar from person to person. That suggests, Uhl says, that as in mice, the variations among people lie instead in the regulatory part of the gene.

PET scans in other labs at Hopkins have shown that the number of mu receptors in humans can differ dramatically: Some people have almost two times more mu receptors in certain brain areas than others.

"People have long been skeptical that pain has a genetic basis," says Uhl. They don't notice that sensitivity can vary because the differences can be subtle, he adds, "and masked by a strong emotional response to pain. Many assume the way people respond is voluntary. Just put up with it' has been a common recommendation for years," says Uhl. "But now people can think of pain as a genetically regulated problem."

Pain, Uhl says, exists mainly in the brain. It occurs, in part, when something activates dedicated pain nerves in the body and spinal cord that relay impulses to the brain. But superimposed at strategic places on nerves in this system are the mu receptors. They respond to natural opiates in the body and, like mutes on so many trumpets, effectively damp down pain's intensity.

The study was supported by NIDA grants. Other researchers were Ichio Sora and Zaijie Wang, both from NIDA.

###

Related Web sites:

Go to http://165.112.78.61/DIR/MolNeuro.html for information on Uhl's research.

Access http://www.halcyon.com/iasp/terms-p.html for good definitions of pain and information on emotional aspects of pain.

Check out http://www.ampainsoc.org/bulletin/jan99/resupdate.htm for an article from the Bulletin of the American Pain Society that tells about why pain is evolutionarily useful and how it's differently perceived.

The study is reported in the July 20, 1999 issue of The Proceedings of the National Academy of Sciences, vol 96.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "Good News For "Wusses": Research Links Pain Sensitivity To Gene." ScienceDaily. ScienceDaily, 21 July 1999. <www.sciencedaily.com/releases/1999/07/990721085406.htm>.
Johns Hopkins Medical Institutions. (1999, July 21). Good News For "Wusses": Research Links Pain Sensitivity To Gene. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/1999/07/990721085406.htm
Johns Hopkins Medical Institutions. "Good News For "Wusses": Research Links Pain Sensitivity To Gene." ScienceDaily. www.sciencedaily.com/releases/1999/07/990721085406.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com
Madagascar Working to Contain Plague Outbreak

Madagascar Working to Contain Plague Outbreak

AFP (Nov. 24, 2014) Madagascar said Monday it is trying to contain an outbreak of plague -- similar to the Black Death that swept Medieval Europe -- that has killed 40 people and is spreading to the capital Antananarivo. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins