Featured Research

from universities, journals, and other organizations

Transplant Cells Show Capacity For Mending Nervous System

Date:
July 30, 1999
Source:
University Of Wisconsin-Madison
Summary:
Using stem cells grown in the laboratory, scientists have successfully transplanted those cells into the nervous systems of ailing rats and arrested the course of a debilitating congenital disease.

Using stem cells grown in the laboratory, scientists have successfully transplanted those cells into the nervous systems of ailing rats and arrested the course of a debilitating congenital disease.

Related Articles


Although accomplished in rats and still some years from clinical application, the work is important because it shows that cells grown from scratch can be used to repair defective nerves. The report was published this week (Friday, July 30) in the journal Science by a team of scientists from the University of Bonn Medical Center, the National Institute of Neurological Disorders and Stroke (NINDS) and the University of Wisconsin-Madison.

The work was accomplished using embryonic stem cells, ephemeral cells that arise within days of conception in a fertilized egg and very quickly develop into all the different kinds of cells -- blood, bone, muscle, neurons -- that make up the body. Such cells hold enormous therapeutic potential to treat disease through the promise of unlimited supplies of laboratory-grown replacement tissue to treat many congenital and acquired diseases, including heart disease, neurological disorders such as Parkinson's disease or multiple sclerosis, and other diseases such as diabetes.

In the new study, stem cells were coaxed down a developmental pathway to become oligodendrocytes and astrocytes, key cells of the central nervous system. Transplanted into the spinal cords of fetal and newborn rats that lack myelin, a tissue that covers some nerve fibers, the cells were observed to promote the growth of the myelin sheaths essential to the ability of nerves to conduct electrical impulses and function normally.

"This is the first study showing that embryonic stem cells can be used for brain and spinal cord repair in an animal model of a human neurological disease," said Oliver Brüstle, a neuropathologist at the University of Bonn and first author of the paper.

Ronald D.G. McKay, chief of the NINDS Laboratory of Molecular Biology and a co-author of the paper, said "the study shows that precursor cells with potential for cell therapy can be generated simply and efficiently from embryonic stem cells."

Two weeks after being surgically transplanted into either fetal or newborn rats with a congenital disease identical to the rare human myelin disorder Pelizaeus-Merzbacher disease, the laboratory-grown cells had developed into numerous myelin sheaths around nerve fibers previously without myelin. When the cells were transplanted into the fetal brain they were later found to have spread widely.

"Our findings demonstrate that cells that have never seen a brain can be developed into specific donor cells for nervous system repair," said Brüstle. Although the set of experiments did not show improved function as a result of the newly formed myelin, it is likely that repaired nerve fibers would conduct normally, said Ian Duncan a UW-Madison professor of neurology, a co-author of the Science paper and an authority on myelin deficiency diseases.

As a strategy for repairing damage by diseases such as multiple sclerosis, Duncan noted that this approach focuses on replacing lost myelin, not stopping ongoing disease, something that will require additional medical therapy. "Nonetheless we believe eventually it will have clinical applications," he said.

Myelin is a critical insulator, helping nerve fibers conduct the electrical impulses that drive ambulation, speech, sight and hearing. Without it, fibers conduct slowly or not at all. The absence of myelin is a manifestation of an array of dire genetic and acquired diseases, the best known being multiple sclerosis.

Importantly, in the study no teratomas -- tumors that frequently arise when undifferentiated stem cells are transplanted into animals -- were generated.

"In no instance did we see the formation of teratomas," said Duncan, "It strongly suggests they will not form under these circumstances, but this needs to be studied over a longer period of time."

In addition to Duncan, authors of the paper published today in Science include, Brüstle, and colleagues Kimberly N. Jones, Khalad Karram, Khalid Choudhary and Otmar D. Wiestler of the University of Bonn Medical Center; McKay of the NINDS; and Randall D. Learish of the University of Wisconsin-Madison.


Story Source:

The above story is based on materials provided by University Of Wisconsin-Madison. Note: Materials may be edited for content and length.


Cite This Page:

University Of Wisconsin-Madison. "Transplant Cells Show Capacity For Mending Nervous System." ScienceDaily. ScienceDaily, 30 July 1999. <www.sciencedaily.com/releases/1999/07/990730073500.htm>.
University Of Wisconsin-Madison. (1999, July 30). Transplant Cells Show Capacity For Mending Nervous System. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/1999/07/990730073500.htm
University Of Wisconsin-Madison. "Transplant Cells Show Capacity For Mending Nervous System." ScienceDaily. www.sciencedaily.com/releases/1999/07/990730073500.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Oxfam Calls for Massive Aid for Ebola-Hit West Africa

Oxfam Calls for Massive Aid for Ebola-Hit West Africa

AFP (Jan. 29, 2015) — Oxfam International has called for a multi-million dollar post-Ebola "Marshall Plan", with financial support given by wealthy countries, to help Guinea, Sierra Leone and Liberia to recover. Duration: 01:10 Video provided by AFP
Powered by NewsLook.com
Are We Winning The Fight Against Ebola?

Are We Winning The Fight Against Ebola?

Newsy (Jan. 29, 2015) — The World Health Organization announced the fight against Ebola has entered its second phase as the number of cases per week has steadily dropped. Video provided by Newsy
Powered by NewsLook.com
Calif. Health Officials Campaign Against E-Cigarettes

Calif. Health Officials Campaign Against E-Cigarettes

Newsy (Jan. 29, 2015) — The California Health Department says e-cigarettes are a public health risk for both smokers and those who inhale e-cig smoke secondhand. Video provided by Newsy
Powered by NewsLook.com
Measles Scare Sends 66 Calif. Students Home

Measles Scare Sends 66 Calif. Students Home

AP (Jan. 29, 2015) — Officials say 66 students at a Southern California high school have been told to stay home through the end of next week because they may have been exposed to measles and are not vaccinated. (Jan. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins