Featured Research

from universities, journals, and other organizations

"Sunglasses" In The Eye

Date:
September 10, 1999
Source:
Max Planck Society
Summary:
Researchers at the Max Planck Institute for Brain Research, Frankfurt/Germany in collaboration with researchers at the CNS Research group of the pharmaceutical company Novartis, Basel/Switzerland, detected a protein in the terminals of the photoreceptor cells of the eye that might play an important role in the transmission of the light signals.

Glutamate Receptor in the Terminals of the Photoreceptor Cells Discovered / Area for Light Signal Transmission

Researchers at the Max Planck Institute for Brain Research, Frankfurt/Germany in collaboration with researchers at the CNS Research group of the pharmaceutical company Novartis, Basel/Switzerland, detected a protein in the terminals of the photoreceptor cells of the eye that might play an important role in the transmission of the light signals (Proc. Natl. Acad. Sci. USA 96, 9909-9914; August 17, 1999).

The light energy caught by the eye is converted into neural messages and are transmitted to the higher visual centers in the brain where the images of our surrounding world come into existence. The light-perceiving, sensory part of the eye is the retina, which lines the back of the eye in a thin neural sheet.

The light-sensing retina is distinguished by its remarkable power to function over many orders of magnitude of light intensities. In sunlight the retina is bombarded by billions of photons, in darkness only few photons hit the retina. In spite of it, we are able to watch the moon and the stars in the night sky. No camera, no physical measuring device, can achieve such a degree of performance. In the following it is described how the retina might use a molecular feedback mechanism to adapt its working range to changing levels of light intensities.

Of key importance for the function of the retina is the conversion of photons into neural signals in the photoreceptor cells and the transmission of the signals to the postsynaptic neurons. For signal transfer the photoreceptor cells release a chemical messenger, glutamate, and the postsynaptic neurons possess receptors for the glutamate.

A mechanism that might play an important role in the first steps of signal transmission from the photoreceptor cells to the postsynaptic neurons has been recently discovered by the research group of Johann Helmut Brandstδtter at the Max Planck Institute for Brain Research, Department of Neuroanatomy in Frankfurt/Germany. In collaboration with the research group of Rainer Kuhn (CNS Research, Novartis, Basel/Switzerland), the distribution and function of the metabotropic glutamate receptor 8, mGluR8, was studied in the retina. Employing immunoelectron microscopy, the Frankfurt group was able to detect for the first time a glutamate receptor in the terminals of the photoreceptor cells. Functional studies using isolated photoreceptor cells showed that the activation of mGluR8 triggers a chain of reactions leading to a decrease in the calcium concentration in the photoreceptor cells. The Frankfurt group concludes from this that the activation of mGluR8 leads to a downregulation of glutamate release from the photoreceptor cells, because calcium concentration and neurotransmitter release mechanisms are causally linked.

The concentration of glutamate at the synapse of the photoreceptor cells represents the light signal. A negative feedback mechanism, as shown for mGluR8, would downregulate the release of glutamate from the photoreceptor cells, and thus the activity of the postsynaptic neurons. This resetting of the working range of the synapse would lead to an expansion in the effective range of transmission of the light signals. This negative feedback inhibition prevents glutamate levels from reaching concentrations that would lead to the saturation of the postsynaptic glutamate receptors and thus loss of signaling capability or possibly even to the excitotoxic effects of glutamate. Or in other words: In our eyes we have a sort of Sun-glasses.


Story Source:

The above story is based on materials provided by Max Planck Society. Note: Materials may be edited for content and length.


Cite This Page:

Max Planck Society. ""Sunglasses" In The Eye." ScienceDaily. ScienceDaily, 10 September 1999. <www.sciencedaily.com/releases/1999/09/990910080155.htm>.
Max Planck Society. (1999, September 10). "Sunglasses" In The Eye. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/1999/09/990910080155.htm
Max Planck Society. ""Sunglasses" In The Eye." ScienceDaily. www.sciencedaily.com/releases/1999/09/990910080155.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) — Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) — Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins