Featured Research

from universities, journals, and other organizations

New Tool For Comparative Gene Studies

Date:
November 24, 1999
Source:
University Of Chicago Medical Center
Summary:
A great deal is known about how model organisms such as fruit flies, nematodes and mice develop. But what about beetles, frogs, and birds? Scientists who study gene function in non-model organisms may get a boost from a new technique developed by Nipam Patel, Ph.D., assistant professor of organismal biology & anatomy and Howard Hughes Investigator at the University of Chicago.

A great deal is known about how model organisms such as fruit flies, nematodes and mice develop. But what about beetles, frogs, and birds? Scientists who study gene function in non-model organisms may get a boost from a new technique developed by Nipam Patel, Ph.D., assistant professor of organismal biology & anatomy and Howard Hughes Investigator at the University of Chicago.

Patel's technique allows scientists to introduce desired genes directly into embryonic cells using the baculovirus, which normally infects and reproduces in only a few species of moths. He has used the virus to carry foreign genes into frog and beetle, as well as fruit fly embryonic cells and believes the virus will prove effective in a wide range of other species.

The results of his findings are published in the November 18 issue of Current Biology.

"The baculovirus vector can easily infect a wide range of species," says Patel. "But outside of its normal moth h ost, the virus is unable to replicate, so there are minimal side effects."

Previously, the opportunity to study gene expression in non-model organisms was very limited. Techniques to create animals in which new genes are permanently inserted into their genomes have only been established for a few animals. Even then, the usefulness of these transgenic organisms is only realized after several generations. This pre sents a problem when studying animals with generation times measured in months or years.

Since the baculovirus can't reproduce outside of its normal moth host, infection is limited to cells near the injection site. This allows researchers to target experimental genes to specific areas.

As infected cells divide, the introduced genes eventually become diluted. But researchers who study developmental processes that occur early in embryogenesis need the genes to work for only a short time in order to test their theories.

Patel has already used this technique to study the gene 'wingless' (wg) in Tribolium, or the red flour beetle. In Drosophila, the role of wg in segmentation has been well documented. Wg codes for a signal molecule which is required for the maintenance of expression of another protein, called 'engrailed' (en ). Together, wingless and engrailed direct segment polarity--which determines the pattern in both the skin and nervous system of each segment. Patel wanted to test whether the function of wingless was conserved in the flour beetle.

Using the baculovirus system, Patel and colleagues first showed that this system faithfully replicated the genetic data from Drosophila. Then using the virus to express wingless in Tribolium, they showed that in the flour beetle, wingless also regulates the expression of engrailed, as in Drosophila.

Future experiments are planned to compare and contrast limb development in beetles, fruit flies and other animals.

Already clinicians are interested in using the new technique to learn more about human gene function. Patel is currently collaborating with Louis Philipson, M.D., Ph.D., associate professor and acting chief of endocrinology at the University of Chicago Hospitals, who studies the effects of genes that regulate insulin secretion.

"Pancreatic islet cells are a lot like brain cells in that they have interesting electrical properties that are crucial to their proper functioning," says Philipson. "We want to study how certain genes modify insulin secretion. Until now, the methods to do this have been very harsh on the cell membrane, and disrupt electrical impulses. The baculovirus turns out to be the most gentle way to get genetic material into these cells and there is no worry about other effects of the virus on the cells," says Philipson.


Story Source:

The above story is based on materials provided by University Of Chicago Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Chicago Medical Center. "New Tool For Comparative Gene Studies." ScienceDaily. ScienceDaily, 24 November 1999. <www.sciencedaily.com/releases/1999/11/991124071108.htm>.
University Of Chicago Medical Center. (1999, November 24). New Tool For Comparative Gene Studies. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/1999/11/991124071108.htm
University Of Chicago Medical Center. "New Tool For Comparative Gene Studies." ScienceDaily. www.sciencedaily.com/releases/1999/11/991124071108.htm (accessed October 1, 2014).

Share This



More Health & Medicine News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Some Positive Ebola News: Outbreak 'Contained' In Nigeria

Some Positive Ebola News: Outbreak 'Contained' In Nigeria

Newsy (Sep. 30, 2014) The CDC says a new case of Ebola has not been reported in Nigeria for more than 21 days, leading to hopes the outbreak might be nearing its end. Video provided by Newsy
Powered by NewsLook.com
UN Ebola Mission Head: Immediate Action Is Crucial

UN Ebola Mission Head: Immediate Action Is Crucial

AFP (Sep. 30, 2014) The newly appointed head of the United Nations Mission for Ebola Emergency Response (UNMEER), Anthony Banbury, outlines operations to tackle the virus. Duration: 00:39 Video provided by AFP
Powered by NewsLook.com
CDC Confirms First Case of Ebola in US

CDC Confirms First Case of Ebola in US

AP (Sep. 30, 2014) The CDC has confirmed the first diagnosed case of Ebola in the United States. The patient is being treated at a Dallas hospital after traveling earlier this month from Liberia. (Sept. 30) Video provided by AP
Powered by NewsLook.com
New Breast Cancer Drug Extends Lives In Clinical Trial

New Breast Cancer Drug Extends Lives In Clinical Trial

Newsy (Sep. 30, 2014) In a clinical trial, breast cancer patients lived an average of 15 months longer when they received new drug Perjeta along with Herceptin. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins