Featured Research

from universities, journals, and other organizations

Combustion Of Composite Propellants Studied At Microscopic Level

Date:
December 3, 1999
Source:
University Of Illinois At Urbana-Champaign
Summary:
Researchers at the University of Illinois are investigating the microscopic combustion behavior of composite propellants, an important step in improving the performance and reliability of solid-fueled launch vehicles and high-speed interceptors.

CHAMPAIGN, Ill. - Researchers at the University of Illinois are investigating the microscopic combustion behavior of composite propellants, an important step in improving the performance and reliability of solid-fueled launch vehicles and high-speed interceptors.

The workhorse of solid rocket motors, composite propellants consist of a heterogeneous mixture of fuel and oxidizer - generally with the oxidizer as a crystalline material surrounded by a fuel-polymer matrix. A common example is ammonium perchlorate and hydroxyl-terminated polybutadiene binder.

"Ammonium perchlorate has been used in solid propellants for decades, and hydroxyl-terminated polybutadiene binder has been phased into production in the last decade, but fundamental questions remain about their combustion behavior," said Quinn Brewster, a professor of mechanical engineering at the U. of I. "Our work investigates the microscopic behavior of the propellant in a simplified geometry that allows easier measurement and comparison with theory."

To study combustion chemistry at the microscopic level, Brewster and his students first form a small propellant sandwich consisting of a layer of fuel between layers of oxidizer. The sandwich is then ignited in a laser-augmented, high-pressure combustion chamber, and the resulting reaction recorded with an intensified CCD (charge-coupled device) camera.

"An optical chopper permits the sequential acquisition of two nearly simultaneous images - one of the flame emission alone, the other with the sample backlit with an ultraviolet source," Brewster said. "A narrowband filter rejects most of the light except that given off by excited hydroxyl molecules."

By studying the CCD images, the researchers were able to examine how the combustion behavior of propellant sandwiches varied with pressure and oxidizer width. "We found that the burning rate increased and the flame enlarged at high pressures," Brewster said. "Increased pressure and wider oxidizer layers also tended to cause the flame to split."

Through parallel computational simulation studies, the researchers further explored the flame structure and energy-transfer characteristics of the combustion reaction. "We used a two-reaction model where the oxidizer is allowed first to react and form an intermediate species which then combines with the fuel in the second reaction," Brewster said. "This double-reaction sequence provides a simple approximation of the complex flames seen in our laboratory experiments."

The simulation shows an initial flame and two leading-edge flames forming over the oxidizer portion of the propellant. "The initial flame splits due to the influence of these two edge flames, which are anchored close to the surface," said Brewster, who presented his team's findings at the Joint Army, Navy, NASA, Air Force (JANNAF) meeting in Cocoa Beach, Fla., on Oct. 22. "The edge flames provide additional heat which raises the reaction rate of the initial flame."


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Combustion Of Composite Propellants Studied At Microscopic Level." ScienceDaily. ScienceDaily, 3 December 1999. <www.sciencedaily.com/releases/1999/12/991203081644.htm>.
University Of Illinois At Urbana-Champaign. (1999, December 3). Combustion Of Composite Propellants Studied At Microscopic Level. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/1999/12/991203081644.htm
University Of Illinois At Urbana-Champaign. "Combustion Of Composite Propellants Studied At Microscopic Level." ScienceDaily. www.sciencedaily.com/releases/1999/12/991203081644.htm (accessed July 26, 2014).

Share This




More Matter & Energy News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins