Featured Research

from universities, journals, and other organizations

Cooperative Action Of Two Proteins Causes Damaged Cells To "Self-Destruct"

Date:
December 21, 1999
Source:
Weizmann Institute
Summary:
Researchers at the Weizmann Institute of Science have recently deciphered part of the cellular events underlying apoptosis - programmed cell death. Their findings, published in Nature earlier this summer, provide important insights into cancer pathologies and their potential cures.

REHOVOT, Israel -- December 20, 1999 -- Researchers at the Weizmann Institute of Science have recently deciphered part of the cellular events underlying apoptosis - programmed cell death. Their findings, published in Nature earlier this summer, provide important insights into cancer pathologies and their potential cures.

It is known that all cells contain a built-in suicide mechanism. This process is vital to normal embryonic development and tissue maintenance. It is the body's means of ridding itself of damaged or surplus cells.

Failure of the apoptosis or suicide mechanism can be deadly. Cell mutations occur regularly in every organism due to environmental factors, such as ultraviolet radiation and chemical toxins, as well as natural cell processes. If left unchecked, the damaged cells will continue to proliferate, often leading to life-threatening diseases, such as cancer.

This "emergency" suicide pathway is designed to reverse or mitigate mutation induced damage, explains Prof. Yosef Shaul of Weizmann's Molecular Genetics Department. It is an intricate check and balance system controlled by a tightly orchestrated team of genes and their respective proteins. These genes interact with each other in an environment characteristic of computer programming, where they respond to If, Then, Else signals concerning cellular functioning. The protein products of these genes will initially attempt to repair the damaged DNA. If they are unsuccessful, they command the cell to "self-destruct." In the third, and worst case scenario, both DNA repair and apoptosis fail, and the result is usually the growth of a tumor.

Yet who are these protein "players", and most importantly, how do they interact? This is what Shaul and colleagues, Prof. Moshe Oren, and Drs. Reuven Agami and Giovanni Blandino, set out to understand.

They began with c-Abl - a major regulator of cell growth which, when mutated, can act as an oncogene - a gene that causes cancer. Earlier research has linked c-Abl malfunctioning to cancer. More than 90 percent of patients with chronic myeloid leukemia have a unique abnormality known as the Philadelphia chromosome, characterized by c-Abl mutations. Shaul therefore decided to examine what c-Abl's role is in safeguarding the cell.

A Family of Tumor Suppressors

The Weizmann team found that irradiation-induced DNA damage activates c-Abl, which subsequently 'recruits' p73, another key regulating protein. The interplay between c-Abl and p73 leads to cell death.

"p73 was a surprise," admits Shaul. "Initially, we believed that c-Abl's most likely cell repair partner would be p53, which until 1997 was perceived as the only tumor suppressor of its kind. Indeed, over 50 percent of all cancer patients show p53 mutations. This is one of the reasons that the discovery of p73 and later p63, both members of the family of p53 tumor suppressors, took the scientific community by surprise."

Nevertheless, Shaul's team was unable to demonstrate a connection between c-Abl and p53, which meant they had to look elsewhere. And their decision to examine c-Abl's interaction with p73 (following its discovery) proved correct.

Phosphate 'Fuel'

Similar to fuel-dependent mobility, the Weizmann team found that the interplay between c-Abl and p73 is phosphate-dependent. Irradiation activates c-Abl (through both phosphate binding and other mechanisms), and c-Abl subsequently activates p73 by phoshorylating it. "Our research suggests that both p73 and c-Abl influence whether a cell becomes cancerous following DNA damage," Shaul explains. "If the function of either of these proteins is flawed, through mutation or impaired phosphorylation, the likelihood of tumor formation increases significantly." Shaul is currently studying these conditions using 'knock-out' mice in which the cell tumor suppression genes have been cancelled.

According to Shaul, the ability to pinpoint the precise point of damage along the pathway leading to DNA repair, cell death or tumor formation, could enhance future cancer therapies.

"Understanding the origin of disease in each patient may prove vital to determining the most effective form of therapy, 'tailored' according to individual patient pathologies. Potential treatments would include radiation, drug therapy or eventually even gene therapy, in which the damaged gene is replaced by a functioning counterpart," says Shaul.

Prof. Shaul holds the Oscar and Emma Getz professional chair. This study was supported by the Burstein Family Foundation.

###

The Weizmann Institute of Science, in Rehovot, Israel, is one of the world's foremost centers of scientific research and graduate study. Its 2,500 scientists, students, technicians and engineers pursue basic research in the quest for knowledge and the enhancement of humanity. New ways of fighting disease and hunger, protecting the environment, and harnessing alternative sources of energy are high priorities at Weizmann.


Story Source:

The above story is based on materials provided by Weizmann Institute. Note: Materials may be edited for content and length.


Cite This Page:

Weizmann Institute. "Cooperative Action Of Two Proteins Causes Damaged Cells To "Self-Destruct"." ScienceDaily. ScienceDaily, 21 December 1999. <www.sciencedaily.com/releases/1999/12/991221080632.htm>.
Weizmann Institute. (1999, December 21). Cooperative Action Of Two Proteins Causes Damaged Cells To "Self-Destruct". ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/1999/12/991221080632.htm
Weizmann Institute. "Cooperative Action Of Two Proteins Causes Damaged Cells To "Self-Destruct"." ScienceDaily. www.sciencedaily.com/releases/1999/12/991221080632.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Snack Attack: Study Says Action Movies Make You Snack More

Snack Attack: Study Says Action Movies Make You Snack More

Newsy (Sep. 2, 2014) You're more likely to gain weight while watching action flicks than you are watching other types of programming, says a new study published in JAMA. Video provided by Newsy
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins