Featured Research

from universities, journals, and other organizations

Untangling A Link Between Normal Protein Folding And Alzheimer's Disease

Date:
December 23, 1999
Source:
Howard Hughes Medical Institute
Summary:
An enzyme that snips apart proteins that form brain-clogging plaques in people with Alzheimer's disease also appears to regulate enzymes that fold new proteins into their working forms in healthy cells.

December 22, 1999 — An enzyme that snips apart proteins that form brain-clogging plaques in people with Alzheimer's disease also appears to regulate enzymes that fold new proteins into their working forms in healthy cells.

Related Articles


The discovery offers new hints about how mutations or exposure to chemicals that affect the regulation of protein-folding machinery might stimulate a protein-snipping enzyme, called presenilin-1, which has been implicated in the pathogenesis of Alzheimer's disease. Such a link, if further confirmed, could have important implications for understanding and treating Alzheimer's disease, say the researchers.

The research team, which included Howard Hughes Medical Institute (HHMI) investigators Peter Walter of the University of California, San Francisco (UCSF) and Randall Kaufman of the University of Michigan, as well as UCSF colleagues Maho Niwa and Carmela Sidrauski, reported its findings in an article in the December 22, 1999, issue of the journal Cell.

The researchers began their studies in hopes of learning more about how proteins involved in the "unfolded protein response" (UPR) detect the amount of unfolded proteins in a cell and signal genes to either increase or decrease the production of protein-folding enzymes. Such signals are critical because newly synthesized proteins, which are essentially linear strings of amino acids, are functionally useless unless they are folded into a three-dimensional form.

The researchers knew that the UPR hinges on a protein, called Ire1, that senses the amount of unfolded proteins and switches on protein-folding genes. They suspected that Ire1 works in the nucleus where it cuts a specific messenger RNA (mRNA) at two places, so that it can be restitched into a gene-activating form by another enzyme.

Since studies of Ire1 splicing had only been done in yeast, the scientists first wanted to see whether such splicing occurred in mammalian cells. Thus, in their initial experiments they inserted the yeast mRNA into human cells and found that it was cut and spliced just as in yeast cells.

"This is a first report showing that salient features of this highly unusual signaling pathway are conserved in mammalian cells," said Walter.

The scientists next wanted to learn how Ire1, which is normally nestled in the membrane of the endoplasmic reticulum (ER), extends its activity all the way to the cell's nucleus. The enzyme appears to extend a "sensor" into the protein-synthesizing region of the ER, where it detects unfolded proteins. The other end of Ire1 that bears the RNA-splicing machinery extends toward the cytosol.

The scientists theorized that Ire1's RNA-splicing end might actually be snipped off, and like an enzymatic guided missile, enter and penetrate deep into the nucleus to splice the target mRNA.

In experiments designed to track the location of the Ire1-cleaved fragment within mammalian cells, the scientists found that the fragment did, indeed, invade the nucleus, and not remain part of the membrane-bound protein.

"This was a complete surprise that when we induced UPR in these cells, a large fraction of Ire1 localizes to the nucleus," said Walter.

"However, it was not all or nothing," he emphasized. "Even uninduced cells showed some Ire1 in the nucleus, so there are many complexities of the process we don't understand." Walter said that the two similar forms of Ire1, dubbed alpha and beta, might be regulated differently and have slightly different functions.

The scientists next sought the identity of the enzyme that snipped off the "missile" portion of Ire1, in a protein-cleaving reaction called proteolysis. Beginning with a hunch that presenilin-1 might be that enzyme, they obtained engineered cells that lacked presenilin-1 from Dennis Selkoe's laboratory at Harvard Medical School. They then studied the cells to see what effect, if any, the loss of presenilin-1 activity would have on Ire1, and found that cells without presenilin-1 did not show proper movement of Ire1 into the nucleus.

"While this analysis establishes a link between presenilin-1 and Ire1 processing, it is not necessarily a direct one, since we have not figured out its biochemistry," emphasized Walter.

Presenilin-1's apparent role in protein folding links this normal cellular process to Alzheimer's disease because researchers had previously shown that presenilin-1 is part of the machinery that slices apart "amyloid precursor protein" to produce the amyloid plaques that clog the brains of Alzheimer's patients. Presenilin-1's dual role could aid in both understanding and treating Alzheimer's disease, said Walter.

For example, he said, abnormally activated Ire1 -- perhaps through genetic mutation -- could overstimulate presenilin-1, which could act to create amyloid plaque deposition.

"Also, environmental agents or toxins could cause protein misfolding through the UPR might induce presenilin-1 activity, which in turn might activate a proteolytic cascade that could also lead to increased amyloid deposits," said Walter.

"Finally, this indication that presenilin-1 plays a role in normal protein processing makes it unlikely that Alzheimer's disease could be treated using drugs to block this pathway without severe side effects for normal physiology," said Walter.


Story Source:

The above story is based on materials provided by Howard Hughes Medical Institute. Note: Materials may be edited for content and length.


Cite This Page:

Howard Hughes Medical Institute. "Untangling A Link Between Normal Protein Folding And Alzheimer's Disease." ScienceDaily. ScienceDaily, 23 December 1999. <www.sciencedaily.com/releases/1999/12/991223011823.htm>.
Howard Hughes Medical Institute. (1999, December 23). Untangling A Link Between Normal Protein Folding And Alzheimer's Disease. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/1999/12/991223011823.htm
Howard Hughes Medical Institute. "Untangling A Link Between Normal Protein Folding And Alzheimer's Disease." ScienceDaily. www.sciencedaily.com/releases/1999/12/991223011823.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com
Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins