Featured Research

from universities, journals, and other organizations

University Of Iowa Study Looks At Cellular Mechanism Involved In Hypertension

Date:
January 5, 2000
Source:
University Of Iowa
Summary:
A University of Iowa researcher has reported a key finding on a basic cellular mechanism involved in hypertension and how this plays a role in Liddle's syndrome, a rare, genetic form of the disease.

IOWA CITY, Iowa -- A University of Iowa researcher has reported a key finding on a basic cellular mechanism involved in hypertension and how this plays a role in Liddle's syndrome, a rare, genetic form of the disease.

The research, published in the Jan. 1 issue of the Journal of Clinical Investigation, by Peter M. Snyder, M.D., UI assistant professor of internal medicine, centers on ion channels in cells called epithelial sodium channels (ENaC). These channels form the pathway for sodium to move across cells in the kidney, making them a critical regulator of blood pressure. Too much sodium absorption through these channels can lead to an increase in blood pressure, causing hypertension.

"It's been known that genetic mutations in ENaC cause a rare form of hypertension called Liddle's syndrome, but we thought ENaC could also be involved in more common forms of hypertension," Snyder said. "So, the basis of this study was to look at how these channels are regulated."

Previous research has shown that ENaC are regulated by a hormone called vasopressin, which is released by the brain in response to dehydration. Vasopressin signals the cell to increase production of a chemical "messenger" inside the cell called cyclic AMP (cAMP), leading to an increase in sodium absorption through ENaC. Snyder's goal was to better understand how this hormone actually performs its function, he said.

In his study using rat cells, Snyder found that vasopressin regulates ENaC by causing the channels to move to the cell surface, a process called translocation.

"Normally, most of the sodium channels are inside the cell in an intracellular pool. However, when these channels are stimulated by vasopressin and cAMP, this causes them to move to the cell surface. As a result, this increases the amount of sodium absorption in the kidneys and thus increases blood pressure."

In Liddle's syndrome, Snyder found that this cAMP regulation is defective, resulting in excessive sodium absorption in the kidney.

The next step, Snyder said, is to understand exactly how vasopressin and cAMP stimulate the movement of ENaC to the cell surface. This could help researchers identify proteins or other cell structures involved in this process and determine if abnormalities in these proteins could play a role in hypertension.

Future studies will also investigate whether the regulation of ENaC by cAMP is defective in patients with more common forms of hypertension.

Snyder's research was funded by the National Heart, Lung and Blood Institute and the National Institute of Diabetes and Digestive and Kidney Diseases, both part of the National Institutes of Health, and the Roy J. Carver Charitable Trust.


Story Source:

The above story is based on materials provided by University Of Iowa. Note: Materials may be edited for content and length.


Cite This Page:

University Of Iowa. "University Of Iowa Study Looks At Cellular Mechanism Involved In Hypertension." ScienceDaily. ScienceDaily, 5 January 2000. <www.sciencedaily.com/releases/2000/01/000105044403.htm>.
University Of Iowa. (2000, January 5). University Of Iowa Study Looks At Cellular Mechanism Involved In Hypertension. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2000/01/000105044403.htm
University Of Iowa. "University Of Iowa Study Looks At Cellular Mechanism Involved In Hypertension." ScienceDaily. www.sciencedaily.com/releases/2000/01/000105044403.htm (accessed July 24, 2014).

Share This




More Health & Medicine News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins