Featured Research

from universities, journals, and other organizations

Weak Interaction Helps Locate Strange Quark In Proton Structure

Date:
February 4, 2000
Source:
University Of Illinois At Urbana-Champaign
Summary:
Since Otto Stern first surprised his colleagues in 1933 by announcing that the proton magnetic moment was three times larger than expected, physicists have puzzled over the origin of the difference. During the past two summers the SAMPLE experiment at the MIT-Bates Linear Accelerator Center has shed new light on this question by measuring the proton magnetic moment as seen by the weak interaction, rather than the electromagnetic interaction.

CHAMPAIGN, Ill. -- Since Otto Stern first surprised his colleagues in 1933 by announcing that the proton magnetic moment was three times larger than expected, physicists have puzzled over the origin of the difference. During the past two summers the SAMPLE experiment at the MIT-Bates Linear Accelerator Center has shed new light on this question by measuring the proton magnetic moment as seen by the weak interaction, rather than the electromagnetic interaction.

Related Articles


"The new measurements provide information about how the different flavors of quarks in the proton generate the magnetic moment," said Doug Beck, a physics professor at the University of Illinois and a collaborator on SAMPLE. "Because the electromagnetic and weak interactions are very precisely related in the Standard Model of particle physics, the new experimental result can be combined with the ordinary proton magnetic moment to uncover the contributions of the up, down and strange quarks."

In the SAMPLE experiment, an intense beam of polarized electrons is scattered off a liquid hydrogen target. The backward-scattered electrons are detected with a Cerenkov detector. Because the counting rate must be very high to accumulate the necessary statistics for a part-per-million measurement, the detector signals are integrated rather than counted.

"The electrons are polarized so their spins are aligned either parallel or anti-parallel to the beam direction," Beck said. "Scattering experiments with these two types of beams are mirror images of each other and are therefore sensitive to the parity-violating nature of the weak interaction." It is the strange quark contribution to the magnetic moment that is of greatest interest because any such effects must come from the virtual quark-antiquark "sea" in the proton, Beck said. The effects of the sea on "large scale" proton properties such as the magnetic moment are largely unknown. In the first SAMPLE experiment, the parity-violating asymmetry of the proton was measured. "Using a theoretical estimate for the contribution of the weak interaction axial current, the portion of the magnetic moment due to strange quarks comes out to be significantly positive, contrary to most theoretical models," Beck said. The SAMPLE experimenters announced their most recent findings in the Jan. 31 issue of Physical Review Letters.

"In order to check the axial current contribution, a second measurement was made this summer using a deuterium target, where the strange quark effects from the proton and neutron are expected to largely cancel," Beck said. "Upon completion of the analysis of these data, the strange quark contribution to the proton magnetic moment should be cleanly determined."

The SAMPLE experiment is a collaboration between the U. of I., California Institute of Technology, Louisiana Tech University, University of Maryland, Massachusetts Institute of Technology, College of William and Mary, and Virginia Polytechnic Institute and State University.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Weak Interaction Helps Locate Strange Quark In Proton Structure." ScienceDaily. ScienceDaily, 4 February 2000. <www.sciencedaily.com/releases/2000/02/000204073943.htm>.
University Of Illinois At Urbana-Champaign. (2000, February 4). Weak Interaction Helps Locate Strange Quark In Proton Structure. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2000/02/000204073943.htm
University Of Illinois At Urbana-Champaign. "Weak Interaction Helps Locate Strange Quark In Proton Structure." ScienceDaily. www.sciencedaily.com/releases/2000/02/000204073943.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will New A350 Help Airbus Fly?

Will New A350 Help Airbus Fly?

Reuters - Business Video Online (Dec. 22, 2014) Qatar Airways takes first delivery of Airbus' new A350 passenger jet. As Joel Flynn reports it's the planemaker's response to the Boeing 787 Dreamliner and the culmination of eight years of development. Video provided by Reuters
Powered by NewsLook.com
Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Buzz60 (Dec. 22, 2014) A BASE jumper rides a lawn chair, a shotgun, and a giant bunch of helium balloons into the sky in what seems like a country version of the movie 'Up." Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins