Featured Research

from universities, journals, and other organizations

Scientists Capture New Images Of Movement In Nerves

Date:
March 22, 2000
Source:
Ohio University
Summary:
Researchers have snapped the first pictures of a sight that has eluded scientists for years – tiny threads of protein key to the health of the nervous system darting along nerve fibers. This could one day lead to a better understanding of nerve malfunction in Lou Gehrig's disease and similar disorders.

Contact: Andrea Gibson (740) 597-2166, gibsona@ohio.edu; after March 29, Anthony Brown (740) 593-2330, browna1@ohio.edu

Related Articles


ATHENS, Ohio –- Aided by a microscope and a digital camera, a team of researchers led by an Ohio University cell biologist has snapped the first pictures of a sight that has eluded scientists for 15 years – tiny threads of protein key to the health of the nervous system darting along nerve fibers.

What they've documented with time-lapse photography could one day lead to a better understanding of nerve malfunction in Lou Gehrig's disease and other, similar neurological disorders.

For the past two decades, scientists have struggled to observe how proteins critical to the growth and maintenance of the nervous system travel through the body's network of nerves. In the March issue of the journal Nature Cell Biology, Anthony Brown, Ohio University associate professor of cell biology, and his colleagues report on a new technique that allowed them to watch and photograph the movement of microscopic threads of protein called neurofilaments in nerve fibers.

A logjam of this neurofilament movement, which blocks other biological processes vital to the nerve's survival, has been seen in patients with certain neurological disorders, such as Lou Gehrig's disease.

"If we can learn something about the way neurofilaments move in nerves, we may get some clues about what possible events could cause them to move abnormally or stop moving," says Brown, principal investigator on the study. "If we understand that, it might have some relevance to these diseases."

The researchers' observation of the neurofilament movement (movies available at http://www.nature.com/ncb//suppl/ncb0300/ncb0300_137/) has provided a rare glimpse of slow axonal transport, the process by which many of the proteins in the nerve cell's cytoplasm travel from the nerve cell body along the nerve fibers, also called axons. These proteins are crucial for the development and maintenance of axons, branch-like fibers that communicate information from the nervous system to other areas of the body.

The study suggests that neurofilaments move in fast but infrequent spurts – at rates of up to two-thousandths of a millimeter per second. This finding argues against a previous theory of slow axonal transport, which hypothesized that neurofilaments and other transported proteins travel in a slow, steady manner. The long pauses between the quick movements the team observed may be one reason why scientists have had a hard time tracking the process, Brown says.

"It's been very puzzling to people in the field why it's been so difficult to see the movement," he says. "Our paper shows the movement of neurofilaments for the first time in cultured nerve cells. The characteristics we see are very surprising, and it may explain why it was difficult to see in the past."

To make the movement visible, Brown's team fused DNA coding for neurofilament protein with the DNA coding for the protein that makes jellyfish glow green. But as most nerve fibers are packed with neurofilaments along their entire length, at first all the researchers could see was one long bright green strip. The scientists solved the problem by studying nerve cells that had fewer neurofilaments, which showed visible gaps in the green fluorescence. They digitally photographed the movement of the neurofilaments by waiting for them to sprint across these gaps.

"The gaps are basically like little windows on the cytoplasm of the axon," Brown says. "They allow us to see movement that we normally wouldn't be able to see. That really was the key."

Now that the researchers have observed neurofilaments in transit, Brown's laboratory will begin the study of how the proteins move. "Only once we understand the mechanism of movement, can we really start to understand the mechanism that might impair movement," Brown says.

The paper was co-authored by Lei Wang, an Ohio University graduate student in Brown's laboratory, and Chung-liang Ho, Dongming Sun and Ronald Liem of the Columbia University College of Physicians and Surgeons. The research was funded by the National Institute of Neurological Disorders and Stroke.

Brown holds an appointment in the College of Arts and Sciences.

-30-

Written by Andrea Gibson.

Attention Editors, Reporters: The article in the March issue of Nature Cell Biology is available online at http://www.nature.com/ncb. To view a movie of the nerve activity described here, go to http://www.nature.com/ncb//suppl/ncb0300/ncb0300_137/. Cutline: Neurofilament proteins move quickly but infrequently along axons.


Story Source:

The above story is based on materials provided by Ohio University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio University. "Scientists Capture New Images Of Movement In Nerves." ScienceDaily. ScienceDaily, 22 March 2000. <www.sciencedaily.com/releases/2000/03/000321104437.htm>.
Ohio University. (2000, March 22). Scientists Capture New Images Of Movement In Nerves. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2000/03/000321104437.htm
Ohio University. "Scientists Capture New Images Of Movement In Nerves." ScienceDaily. www.sciencedaily.com/releases/2000/03/000321104437.htm (accessed October 26, 2014).

Share This



More Health & Medicine News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
Toxin-Packed Stem Cells Used To Kill Cancer

Toxin-Packed Stem Cells Used To Kill Cancer

Newsy (Oct. 25, 2014) — A Harvard University Research Team created genetically engineered stem cells that are able to kill cancer cells, while leaving other cells unharmed. Video provided by Newsy
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins