Featured Research

from universities, journals, and other organizations

Liquid Film-Thickness Measurement Technique Is Fast And Inexpensive

Date:
June 12, 2000
Source:
University Of Illinois At Urbana-Champaign
Summary:
Precise measurements of film thickness at liquid-vapor interfaces are important in commercial applications such as power plants, oil refineries and refrigeration systems, but are often expensive and difficult to make. Now researchers at the University of Illinois have developed an automated optical film-thickness measurement technique that is both inexpensive and nonintrusive.

CHAMPAIGN, Ill. -- Precise measurements of film thickness at liquid-vapor interfaces are important in commercial applications such as power plants, oil refineries and refrigeration systems, but are often expensive and difficult to make. Now researchers at the University of Illinois have developed an automated optical film-thickness measurement technique that is both inexpensive and nonintrusive.

Related Articles


The technique works by shining light from a light-emitting diode on the outside of a transparent tubular test section. Some of the light is reflected by total internal reflection at the liquid-vapor interface and forms a sharp ring on the outside of the tube. By measuring the diameter of the ring, the researchers can determine the film's thickness to an accuracy of one-hundredth of a millimeter.

The noninvasive technology is based on a measurement technique patented in 1997 by UI mechanical engineering professor Ty Newell and graduate student Evan Hurlburt (now a postdoctoral research associate in the UI department of chemical engineering). Recent improvements by graduate student Tim Shedd have turned the technique into a sophisticated film-thickness measurement system that also provides a unique research capability.

"In this application, light is reflected from the surface of a liquid film flowing over a transparent wall," Shedd said. "The reflected light generates an image on the outside of the wall which is captured by a CCD [charge-coupled device] camera and digitized in a computer. The resulting image is processed using custom software to produce an accurate film-thickness measurement."

Unlike other measurement methods that are based on electrical conductivity, dye injection or light absorption, the new technique does not disturb the flow itself, Shedd said. "So you can insert it nearly anywhere in a system and obtain reliable results. And because the technique is automated, several hundred film thickness readings can be taken in just a few minutes."

In addition to many commercial applications -- such as monitoring quality control in chemical-processing plants or sensing potential cooling failures in nuclear power plants -- the measurement technique can serve as a powerful, analytic research tool. In one project, for example, Shedd is exploring how effectively liquid refrigerants "wet" the walls in various square- and triangular-shaped tubes for potential use in highly efficient heat exchangers.

"We need to understand how the fluid is spread around the inside of the tube and measure its thickness profile in order to understand the effective heat transfer," he said. "Knowing the distribution of the liquid film is also very important in determining how much energy must be expended in pushing the refrigerant through the pipe."

Shedd's work was supported by the UI Air Conditioning and Refrigeration Center, a National Science Foundation industry/university cooperative research center.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Liquid Film-Thickness Measurement Technique Is Fast And Inexpensive." ScienceDaily. ScienceDaily, 12 June 2000. <www.sciencedaily.com/releases/2000/06/000602074310.htm>.
University Of Illinois At Urbana-Champaign. (2000, June 12). Liquid Film-Thickness Measurement Technique Is Fast And Inexpensive. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2000/06/000602074310.htm
University Of Illinois At Urbana-Champaign. "Liquid Film-Thickness Measurement Technique Is Fast And Inexpensive." ScienceDaily. www.sciencedaily.com/releases/2000/06/000602074310.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins