Featured Research

from universities, journals, and other organizations

Scientists Propose Growing Better Semiconductor Crystals In Space

Date:
June 5, 2000
Source:
University Of Illinois At Urbana-Champaign
Summary:
Crystals grown in space may be the next big step toward improved semiconductor materials for use in next-generation communication systems and advanced computers.

CHAMPAIGN, Ill. -- Crystals grown in space may be the next big step toward improved semiconductor materials for use in next-generation communication systems and advanced computers.

Scientists and engineers who are trying to develop semiconductor "alloy crystals" -- special blends of germanium and silicon -- have a big problem on their hands. The crystals possess highly desirable thermoelectric and electro-optic properties, but they are nearly impossible to grow on Earth because of the effects of gravity.

"Germanium is about three times heavier than silicon, so it generally sinks to the bottom of the melt in the crucible, destroying the desired homogenous concentration in the crystal," said John Walker, a professor of mechanical and industrial engineering at the University of Illinois. "On Earth, gravity also presses the liquid against the walls of the container, resulting in the formation of numerous faults, dislocations and contact stresses in the growing crystal."

In the absence of gravity, however, the ingredients don't separate as readily and the molten material tends to pull away from the container shortly before solidifying, Walker said. "In experiments performed on the space shuttle, this 'detached growth' process has produced much better crystals."

Walker is working with scientists at Marshall Space Flight Center -- NASA's lead center for microgravity research in materials science -- to explore physical processes in space that are difficult to study on Earth. The group has proposed growing alloy crystals on the International Space Station.

"The pencil-thin crystals would be grown in special ampuls within magnetic damping furnaces on the space station," Walker said. "The magnetic fields would act as a brake, suppressing all movement in the molten material and thereby preventing the mixture from separating."

Walker has developed models to help optimize the benefits of using magnetic fields to control crystal growth. He also has devised methods for determining the distributions of the magnetic field and the electromagnetic force at different frequencies, and their effects on the melt motion.

"These crystals take up to 14 days to grow," Walker said. "It's a very slow and delicate process that must be precisely monitored and controlled. By controlling the melt motion with an externally applied magnetic field, we can produce a uniform distribution in the crystal."

While growing crystals in space will probably never be commercially viable, Walker and his colleagues hope to show that space-grown crystals consistently create better semiconductor materials.

"Then, once we understand the fundamental materials science, we can search for a way to reliably reproduce these crystals on Earth, in the presence of gravity," he said.

Walker will present his results at the NASA Microgravity Materials Science Conference, to be held June 6-8, at the Marshall Space Flight Center in Huntsville, Ala.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Scientists Propose Growing Better Semiconductor Crystals In Space." ScienceDaily. ScienceDaily, 5 June 2000. <www.sciencedaily.com/releases/2000/06/000602074630.htm>.
University Of Illinois At Urbana-Champaign. (2000, June 5). Scientists Propose Growing Better Semiconductor Crystals In Space. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2000/06/000602074630.htm
University Of Illinois At Urbana-Champaign. "Scientists Propose Growing Better Semiconductor Crystals In Space." ScienceDaily. www.sciencedaily.com/releases/2000/06/000602074630.htm (accessed September 2, 2014).

Share This




More Space & Time News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: NASA Captures Solar Flare

Raw: NASA Captures Solar Flare

AP (Sep. 1, 2014) NASA reported the sun emitted a mid-level solar flare, on August 24th. NASA's Solar Dynamics Observatory captured the images of the flare, which erupted on the left side of the sun. (Sept. 1) Video provided by AP
Powered by NewsLook.com
Space Shuttle Discovery's Legacy, 30 Years Later

Space Shuttle Discovery's Legacy, 30 Years Later

Newsy (Aug. 30, 2014) The space shuttle Discovery launched for the very first time 30 years ago. Here's a look back at its legacy. Video provided by Newsy
Powered by NewsLook.com
Experiment Tests Whether Universe Is Actually A Hologram

Experiment Tests Whether Universe Is Actually A Hologram

Newsy (Aug. 27, 2014) Researchers at Fermilab are using a device called "The Holometer" to test whether our universe is actually a 2-D hologram that just seems 3-D. Video provided by Newsy
Powered by NewsLook.com
SpaceX’s Falcon 9 Rocket Explodes After Liftoff

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

Newsy (Aug. 23, 2014) The private spaceflight company says it is preparing a thorough investigation into Friday's mishap. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins