Featured Research

from universities, journals, and other organizations

Membrane Protein Research Yields New Insights Into Inner Workings Of The Cell

Date:
June 28, 2000
Source:
National Science Foundation
Summary:
Biophysicists at the National Science Foundation’s National High Magnetic Field Laboratory in Tallahassee, Florida, have discovered that membrane proteins give rise to unique patterns of signals in their nuclear magnetic resonance (NMR) spectra. This result opens a new approach for the three dimensional characterization of membrane protein structures.

Biophysicists at the National Science Foundation’s National High Magnetic Field Laboratory in Tallahassee, Florida, have discovered that membrane proteins give rise to unique patterns of signals in their nuclear magnetic resonance (NMR) spectra. This result opens a new approach for the three dimensional characterization of membrane protein structures.

Membrane proteins are responsible for communication between the external cellular environment and the cell’s interior where chemistry and biological functions are typically accomplished. Membrane proteins are often responsible for cellular recognition and for the transport of nutrients into and products out of cells. However, these important proteins have been particularly difficult to characterize by standard technologies and hence few membrane protein structures are known today.

"About 25 percent of proteins are membrane proteins, yet structures of only few of these are known," says Kamal Shukla, director of NSF's molecular biophysics program, which funded the research. "X-ray crystallography and solution NMR cannot be used for these proteins because they are hard to crystallize and are not soluble. The methodology developed by Cross and his colleagues for obtaining structural information of integral membrane proteins is therefore exceedingly important."

It has been known for some time that structural constraints from solid state NMR spectroscopy of uniformly aligned samples can be used to develop a high resolution three-dimensional structure. However, while many constraints can be obtained there has been no approach for dependable resonance assignments. In other words, without knowing where in the molecule each signal comes from it has been difficult to make progress with structural characterization.

Now, researchers Tim Cross, Riqiang Fu and Jack Quine, and their coworkers, supported by the NSF’s molecular biophysics program, have discovered that the signal patterns observed in two dimensional spectra directly reflect the distribution of amino acids about a helical axis, known as a helical wheel. Through standard methods of isotopic labeling using bacterial cultures, it is now possible to assign these signals to specific atomic sites in the membrane protein helices.

Furthermore, the location of the resonance patterns in the spectrum defines the tilt of the helix within the membrane. Indeed, it is possible to get this topological information on a helix without signal assignments - the first time this has been possible in NMR spectroscopy.

These results have been published as the cover story in the May 2000 issue of the Journal of Magnetic Resonance.


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "Membrane Protein Research Yields New Insights Into Inner Workings Of The Cell." ScienceDaily. ScienceDaily, 28 June 2000. <www.sciencedaily.com/releases/2000/06/000625233208.htm>.
National Science Foundation. (2000, June 28). Membrane Protein Research Yields New Insights Into Inner Workings Of The Cell. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2000/06/000625233208.htm
National Science Foundation. "Membrane Protein Research Yields New Insights Into Inner Workings Of The Cell." ScienceDaily. www.sciencedaily.com/releases/2000/06/000625233208.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins