Featured Research

from universities, journals, and other organizations

Researchers Determine Improved Pattern For Artificial Light-Harvesting Molecule

Date:
July 20, 2000
Source:
University Of Rochester
Summary:
For 20 years, researchers have experimented with artificially created, tree-like molecules that act like antennae and might someday play a key role in a number of processes, from releasing a drug inside the body to converting light to energy more efficiently than Mother Nature. Now researchers at the University of Rochester have computed what seems to be the most efficient configuration for one class of these molecules.

For 20 years, researchers have experimented with artificially created, tree-like molecules that act like antennae and might someday play a key role in a number of processes, from releasing a drug inside the body to converting light to energy more efficiently than Mother Nature. Now researchers at the University of Rochester have computed what seems to be the most efficient configuration for one class of these molecules, and have published their results in the July 10 issue of Physical Review Letters.

Related Articles


"These are giant, light-harvesting molecules," explains Shaul Mukamel, professor of chemistry. "Each one is designed like a net that captures light and funnels its energy into its core where we can make it do almost anything we want." The fractal-shaped molecules, called dendrimers, are currently used in laboratories to control chemical reactions, since researchers can use them to release a chemical at the perfect moment, but only recently have scientists realized some of their potential. The organic molecules look like snowflakes, with tiny limbs branching out in all directions to capture a ray of light and channel its energy into the molecule's heart. There the light energy can be harnessed to generate power like a super-efficient photoelectric cell or to release a chemotherapeutic drug inside a tumor after it's been carried through the bloodstream. Dendrimers might even one day act as the initial necessary step in photosynthesis, improving the light-harvesting task performed naturally within any green leaf, to yield crops that can grow where none grew before.

To determine the most efficient configuration, graduate student Subhadip Raychaudhuri and chemistry research associate Vladimir Chernyak, worked with Mukamel and Yonathan Shapir, professor of physics, to run thousands of computer simulations that incorporated everything known about the way atoms interact, to see whether there was a certain shape or size of dendrimer that caught and funneled light's energy best. "What surprised us is that there is a point of diminishing returns," says Shapir.

Many scientists have envisioned building bigger and bigger molecules, since a dendrimer needs as many light-catching limbs as possible to capture light, much as a big tree snares more light than a smaller one. But the researchers found a problem: the larger the molecule, the harder time it had funneling that light energy toward its center. Like a squirrel running along a tree branch, when the light encountered a fork in the limb it could either run out toward a twig, or in toward the trunk. If the tree were too big, the squirrel might not know which way was twigward or trunkward, and the hapless creature would run around lost until it died. In the same way, the researchers watched as their simulations showed that dendrimers lost the light they captured if they were too big. The light would simply dissipate long before it reached the center, where a drug or other chemical was waiting to be activated.

In research funded by the National Science Foundation, the team of chemists and theoretical physicists ran the simulations over and over until they found the magic number for one particular family of dendrimers: nine. The dendrimers could branch out up to nine times before their ability to funnel light became compromised. The team expects the findings to set the guidelines for the synthesis of large fractal-like dendrimers that could be used in many chemical reactions, from making magnetic resonance imaging (MRI) scans more accurate, to converting sunlight to energy for weakened plants.


Story Source:

The above story is based on materials provided by University Of Rochester. Note: Materials may be edited for content and length.


Cite This Page:

University Of Rochester. "Researchers Determine Improved Pattern For Artificial Light-Harvesting Molecule." ScienceDaily. ScienceDaily, 20 July 2000. <www.sciencedaily.com/releases/2000/07/000720080608.htm>.
University Of Rochester. (2000, July 20). Researchers Determine Improved Pattern For Artificial Light-Harvesting Molecule. ScienceDaily. Retrieved March 2, 2015 from www.sciencedaily.com/releases/2000/07/000720080608.htm
University Of Rochester. "Researchers Determine Improved Pattern For Artificial Light-Harvesting Molecule." ScienceDaily. www.sciencedaily.com/releases/2000/07/000720080608.htm (accessed March 2, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, March 2, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

HTC And Valve Team Up For Virtual Reality Headset

HTC And Valve Team Up For Virtual Reality Headset

Newsy (Mar. 1, 2015) HTC unveiled Vive, its new virtual reality headset, Sunday. The device is supported by gaming company Valve, which has made a push into the market. Video provided by Newsy
Powered by NewsLook.com
Rehab Robot Helps Restore Damaged Muscles and Nerves

Rehab Robot Helps Restore Damaged Muscles and Nerves

Reuters - Innovations Video Online (Mar. 1, 2015) A rehabilitation robot prototype to help restore deteriorated nerves and muscles using electromyography and computer games. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Elon Musk's Hyperloop Moves Forward

Elon Musk's Hyperloop Moves Forward

Buzz60 (Feb. 27, 2015) Zipping around at 800-miles an hour is coming closer to reality in California. An entire town is being built around Elon Musk&apos;s Hyperloop concept and it wants you to stop in for a ride when it&apos;s ready. Brett Larson is on board. Video provided by Buzz60
Powered by NewsLook.com
Vibrating Bicycle Senses Traffic

Vibrating Bicycle Senses Traffic

Reuters - Innovations Video Online (Feb. 26, 2015) Dutch scientists have developed a smart bicycle that uses sensors, wireless technology and video to warn riders of traffic dangers. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins