Featured Research

from universities, journals, and other organizations

Researchers Determine Improved Pattern For Artificial Light-Harvesting Molecule

Date:
July 20, 2000
Source:
University Of Rochester
Summary:
For 20 years, researchers have experimented with artificially created, tree-like molecules that act like antennae and might someday play a key role in a number of processes, from releasing a drug inside the body to converting light to energy more efficiently than Mother Nature. Now researchers at the University of Rochester have computed what seems to be the most efficient configuration for one class of these molecules.

For 20 years, researchers have experimented with artificially created, tree-like molecules that act like antennae and might someday play a key role in a number of processes, from releasing a drug inside the body to converting light to energy more efficiently than Mother Nature. Now researchers at the University of Rochester have computed what seems to be the most efficient configuration for one class of these molecules, and have published their results in the July 10 issue of Physical Review Letters.

"These are giant, light-harvesting molecules," explains Shaul Mukamel, professor of chemistry. "Each one is designed like a net that captures light and funnels its energy into its core where we can make it do almost anything we want." The fractal-shaped molecules, called dendrimers, are currently used in laboratories to control chemical reactions, since researchers can use them to release a chemical at the perfect moment, but only recently have scientists realized some of their potential. The organic molecules look like snowflakes, with tiny limbs branching out in all directions to capture a ray of light and channel its energy into the molecule's heart. There the light energy can be harnessed to generate power like a super-efficient photoelectric cell or to release a chemotherapeutic drug inside a tumor after it's been carried through the bloodstream. Dendrimers might even one day act as the initial necessary step in photosynthesis, improving the light-harvesting task performed naturally within any green leaf, to yield crops that can grow where none grew before.

To determine the most efficient configuration, graduate student Subhadip Raychaudhuri and chemistry research associate Vladimir Chernyak, worked with Mukamel and Yonathan Shapir, professor of physics, to run thousands of computer simulations that incorporated everything known about the way atoms interact, to see whether there was a certain shape or size of dendrimer that caught and funneled light's energy best. "What surprised us is that there is a point of diminishing returns," says Shapir.

Many scientists have envisioned building bigger and bigger molecules, since a dendrimer needs as many light-catching limbs as possible to capture light, much as a big tree snares more light than a smaller one. But the researchers found a problem: the larger the molecule, the harder time it had funneling that light energy toward its center. Like a squirrel running along a tree branch, when the light encountered a fork in the limb it could either run out toward a twig, or in toward the trunk. If the tree were too big, the squirrel might not know which way was twigward or trunkward, and the hapless creature would run around lost until it died. In the same way, the researchers watched as their simulations showed that dendrimers lost the light they captured if they were too big. The light would simply dissipate long before it reached the center, where a drug or other chemical was waiting to be activated.

In research funded by the National Science Foundation, the team of chemists and theoretical physicists ran the simulations over and over until they found the magic number for one particular family of dendrimers: nine. The dendrimers could branch out up to nine times before their ability to funnel light became compromised. The team expects the findings to set the guidelines for the synthesis of large fractal-like dendrimers that could be used in many chemical reactions, from making magnetic resonance imaging (MRI) scans more accurate, to converting sunlight to energy for weakened plants.


Story Source:

The above story is based on materials provided by University Of Rochester. Note: Materials may be edited for content and length.


Cite This Page:

University Of Rochester. "Researchers Determine Improved Pattern For Artificial Light-Harvesting Molecule." ScienceDaily. ScienceDaily, 20 July 2000. <www.sciencedaily.com/releases/2000/07/000720080608.htm>.
University Of Rochester. (2000, July 20). Researchers Determine Improved Pattern For Artificial Light-Harvesting Molecule. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2000/07/000720080608.htm
University Of Rochester. "Researchers Determine Improved Pattern For Artificial Light-Harvesting Molecule." ScienceDaily. www.sciencedaily.com/releases/2000/07/000720080608.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins