Featured Research

from universities, journals, and other organizations

UC Berkeley Physicists Create Tiny Bearings And Springs Out Of Carbon Nanotubes For Use In Microscopic Machines

Date:
August 23, 2000
Source:
University Of California, Berkeley
Summary:
Physicists at the University of California, Berkeley, have peeled the tips off carbon nanotubes to make seemingly frictionless bearings so small that some 10,000 would stretch across the diameter of a human hair.

Berkeley - Physicists at the University of California, Berkeley, have peeled the tips off carbon nanotubes to make seemingly frictionless bearings so small that some 10,000 would stretch across the diameter of a human hair.

The minuscule bearings are actually telescoping nanotubes with the inner tube spinning about its long axis. When sliding in and out, however, they act as nanosprings.

Both the springs and bearings, which appear to move with no wear and tear, could be important components of the microscopic and eventually nanoscale machines under development around the world.

Micromachines, called MEMS devices, for microelectromechanical systems, are on the scale of a human hair. Nanoelectromechanical systems (NEMS) are a thousand times smaller, on the scale of a nanometer or a billionth of a meter. Nanotubes, for example, are hollow cages of carbon atoms several nanometers thick and up to several thousand nanometers long, looking on the molecular level like chicken wire stretched around a baguette.

"Friction is a big problem with MEMS, but these nanoscale bearings just slide as if there's no friction," said John Cumings, a graduate student in the Department of Physics at UC Berkeley who created the bearings. "As a lower limit, friction is a thousand times smaller than you find in conventional MEMS devices made with silicon or silicon nitride."

Cumings and advisor Alex Zettl, professor of physics at UC Berkeley, report on their low-friction bearings in an article in this week's issue of Science.

Nanotubes were first discovered in the black residue of a carbon arc, the same place scientists discovered buckyballs - 60 atoms of carbon arranged in the shape of a soccer ball. Nanotubes are essentially elongated buckyballs, usually nested within one another with typically several to several dozen concentric shells.

In order to move these amazingly small structures around, Cumings first had to build a manipulator. He and Zettl in effect built a scanning tunneling microscope, typically used to produce atom-by-atom pictures of the surface of materials, inside a transmission electron microscope (TEM). TEMs use electron beams to take pictures at resolutions down to a few nanometers, at a speed of several frames a second - enough to construct a video. The TEM he used is located at the Lawrence Berkeley National Laboratory, where Zettl is a member of the materials science division.

Using the fine-tipped probe of the scanning tunneling microscope (STM), Cumings was able to manipulate nanotubes and watch what he was doing in real-time with the TEM.

To make a bearing, he first attached one end of a multi-layer nanotube to a gold wire. To manipulate this nanotube, he snagged a sturdier nanotube with the tip of the STM probe. In a report soon to appear in the British journal Nature, Cumings and Zettl describe how they wielded the nanotube manipulator to peel off the end of the outer nanotubes but leave the inner nanotubes intact and protruding. A typical experiment converted a nine-walled nanotube with an outer diameter of eight nanometers - the width of about 100 atoms - into two telescoped tubes, the inner one with four walls and an outer diameter of four nanometers.

After spot-welding the manipulator to the tip of the inner nanotubes, he was able to slide the inner tubes in and out of the outer tubes, telescoping them like a spyglass. Though he was only able to move the nanotubes in and out as a linear bearing, he said the telescoping nanotubes would work just as well as a rotating bearing.

Since all this manipulation was performed under the magnification of a TEM, he was able to look closely at the nanotube structure after 10-20 cycles of pushing and pulling. He saw no change in molecular structure whatsoever, indicating there is essentially no friction between the two sliding nanotubes.

"We saw no wear or fatigue, no matter how many times we did it, up to about 20 times," Cumings said. "Because we're looking at the molecular level, this means there will be no wear if we did it another 20 times, or a million times. This is like a bearing that doesn't have any wear."

Once, as Cumings telescoped the nanotubes, the spot-weld broke, and surprisingly the inner tube automatically retracted into the outer nanotube. He and Zettl eventually deduced that minuscule intermolecular forces, called Van der Waals forces, were strong enough to pull the inner tube completely inside the outer tube. This means the sliding nanotubes could also serve as nanosprings.

"The transit time for complete nanotube core retraction (on the order of 1 to 10 nanoseconds) implies the possibility of exceptionally fast electomechanical switches," the two authors wrote.

The same Van der Waals forces apparently lubricate the nanotube bearings and are identical to the forces that lubricate the sheets of carbon in graphite and make graphite break easily along two-dimensional planes.

Cumings anticipates such nanosprings could prove useful in MEMS and NEMS devices, not the least because they exert a constant force throughout their range of motion. He and Zettl plan to improve their ability to manipulate nanotubes inside a TEM and also develop microfabrication technology to create more elaborate devices.

"Our results demonstrate that multiwall carbon nanotubes hold great promise for nanomechanical or nanoelectromechanical systems (NEMS) applications," they conclude in their paper. "Low-friction, low-wear nanobearings and nanosprings are essential ingredients in general NEMS technologies."

The work is supported by the U.S. Department of Energy and the National Science Foundation.


Story Source:

The above story is based on materials provided by University Of California, Berkeley. Note: Materials may be edited for content and length.


Cite This Page:

University Of California, Berkeley. "UC Berkeley Physicists Create Tiny Bearings And Springs Out Of Carbon Nanotubes For Use In Microscopic Machines." ScienceDaily. ScienceDaily, 23 August 2000. <www.sciencedaily.com/releases/2000/08/000807062412.htm>.
University Of California, Berkeley. (2000, August 23). UC Berkeley Physicists Create Tiny Bearings And Springs Out Of Carbon Nanotubes For Use In Microscopic Machines. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2000/08/000807062412.htm
University Of California, Berkeley. "UC Berkeley Physicists Create Tiny Bearings And Springs Out Of Carbon Nanotubes For Use In Microscopic Machines." ScienceDaily. www.sciencedaily.com/releases/2000/08/000807062412.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins