Featured Research

from universities, journals, and other organizations

Process May Help Scientists Find New Antibacterial Drugs

Date:
August 29, 2000
Source:
Johns Hopkins University
Summary:
The hunt for new antibiotic drugs, driven by emerging diseases and growing bacterial resistance to existing antibiotics, may get a little easier thanks to a new process for making compounds that contain a key bacteria-stopping structure.

The hunt for new antibiotic drugs, driven by emerging diseases and growing bacterial resistance to existing antibiotics, may get a little easier thanks to a new process for making compounds that contain a key bacteria-stopping structure.

Related Articles


The process, developed by a group of researchers led by Thomas Lectka, associate professor of chemistry at The Johns Hopkins University, will make it less expensive to create and easier to test compounds belonging to a class of drugs known as beta-lactams. Penicillin and a number of other infection-fighters are beta-lactams, but bacterial resistance has reduced the usefulness of an increasing number of these drugs.

Lectka, who describes the new process in a report in the online version of The Journal of the American Chemical Society [scroll down to Aug. 2], hopes his work will facilitate the creation of new beta-lactam drugs.

"Beta-lactams have been critical tools for fighting the spread of bacterial infections in the past, and they could be so again," Lectka says. "It's also important to note that while beta-lactams have traditionally been used as antibiotics, they have recently found use in treating patients with conditions ranging from arthritis to HIV."

Beta-lactams's distinguishing characteristic is a high-energy ring of three carbon atoms and one nitrogen atom known as a beta-lactam ring.

"This ring wants to pop open," Lectka explains, "but it doesn't typically do that until a bacterial enzyme comes along and mistakes it for a substrate, a material chemically modified by the enzyme. When the enzyme uses the beta-lactam, the ring snaps open, disabling the enzyme and effectively killing the bacteria."

After decades of overuse of penicillin and other popular antibiotics, though, many bacteria have developed enzymes that disable the beta-lactam rings first. Those enzymes are usually highly specific to one beta-lactam, leaving open the possibility that new beta-lactams might be able to defeat the bacteria. However, researchers interested in making new beta-lactams found themselves confronted with two primary obstacles: cost, and a tricky property called chirality.

Chiral compounds are compounds that can appear in a left-handed or a right-handed form, Lectka explains, noting that each form is known as an enantiomer. Like a pair of human hands, chiral compounds are identical in structure, but their mirror image is not superimposable on the original. Just as trying to put a left-handed glove on your right hand doesn't work, one enantiomer may react with an enzyme while the opposite-handed enantiomer of the same compound does not.

Changing from one enantiomer to another can dramatically alter a drug's biochemical properties, possibly changing an inert substance to a helpful drug or a harmful toxin. One of the most notable cases of this is the drug thalidomide. One enantiomer has beneficial properties, while the other causes birth defects.

"Many of the body's most active chemicals are chiral," Lectka notes, "and they tend to work together like a lock and a key, unleashing positive and sometimes negative effects."

Lectka, who received the prestigious Alfred P. Sloan fellowship earlier this year, is an expert in the field of chemistry known as asymmetric synthesis. Normally, chemical synthesis will produce both left- and right-handed enantiomers, but Lectka and others like him have been developing techniques to synthesize batches of chiral compounds that consist solely of one enantiomer. Such synthesis techniques can aid efforts to design and use new compounds by making it easier for scientists to put the compounds to use without the confounding effects that two enantiomers might present.

A key component to the new beta-lactam synthesis process is the catalyst, a substance that triggers or encourages a chemical reaction without itself being modified by the reaction.

After an extensive search for a catalyst, the Lectka group settled on quinine, which had previously achieved fame as the world's foremost malaria treatment. Quinine occurs naturally in a tree bark, and like many naturally occurring compounds, is enantiomerically pure – it is made up of only one enantiomer. Enantiomerically pure compounds are generally expensive, Lectka notes, but with a small amount of quinine, a large batch of beta-lactams can be produced. Also, since the quinine is not changed by the reaction, it can be used indefinitely.

Lectka's group is currently adapting their new process so that the catalyst can be used to make other classes of biologically active molecules. He hopes to one day incorporate elements of combinatorial chemistry, which produces a huge variety of compounds at once, and then selectively screens the compounds for desirable properties.

Additional authors of the report were Andrew Taggi, Ahmed Hafez, Harald Wack, Brandon Young, and William Drury III. Lectka's research was funded by DuPont; Eli Lilly and Co.; the National Science Foundation, which gave Lectka one of its teacher-scholar awards; and Lectka's Sloan Foundation Fellowship.


Story Source:

The above story is based on materials provided by Johns Hopkins University. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins University. "Process May Help Scientists Find New Antibacterial Drugs." ScienceDaily. ScienceDaily, 29 August 2000. <www.sciencedaily.com/releases/2000/08/000828154139.htm>.
Johns Hopkins University. (2000, August 29). Process May Help Scientists Find New Antibacterial Drugs. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2000/08/000828154139.htm
Johns Hopkins University. "Process May Help Scientists Find New Antibacterial Drugs." ScienceDaily. www.sciencedaily.com/releases/2000/08/000828154139.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins