Featured Research

from universities, journals, and other organizations

Tiny Sampling Device Promises Big Results For Detection And Analysis Of Chemicals

Date:
August 31, 2000
Source:
Sandia National Laboratories
Summary:
A chemical sampling device smaller than the tip of a fingernail promises big results for detecting and analyzing trace chemicals.

ALBUQUERQUE, N.M. — A chemical sampling device smaller than the tip of a fingernail promises big results for detecting and analyzing trace chemicals.

The tool, developed by the Department of Energy’s Sandia National Laboratories, is a super miniaturized version of a traditional preconcentrator used to collect sample gases for analysis. The active area of the device is only two millimeters by two millimeters.

Already part of Sandia’s initiative to build a hand-held “chemistry laboratory,” it potentially can be integrated with other micro chemical detectors, including a mass spectrometer or an ion mobility spectrometer.

The miniaturized size will allow chemical testing using small hand-held instruments, eliminating the need to send samples to a large laboratory. This would be beneficial, for example, to a soldier in battle who needs to know immediately what chemical he is encountering. He doesn’t have a laboratory handy and doesn’t have hours to wait for an analysis.

“Because it can work with different types of microanalytical systems, this device is receiving a lot of attention,” says researcher Ron Manginell, who has been working on the preconcentrator for the past three years. “It’s small, uses minute amounts of power, is extremely portable, and is inexpensive to produce — all making it very interesting to both industry and the military.”

A traditional preconcentrator consists of a cigarette-size stainless steel tube packed with an adsorbent material. A pump forces the sample gas through the tube where it is adsorbed into the material. The steel tube then goes into a benchtop thermal desorber and is heated to 200 degrees C. The gas escapes from the tube for analysis by a detector such as a benchtop gas chromatograph system that determines the chemical’s nature.

Manginell says this traditional system is bulky, slow, and must be done in a laboratory setting — not at all practical for field testing.

Project lead Greg Frye-Mason says the microfabricated planar preconcentrator is a revolution in front-end sampling devices. Using standard integrated circuit microfabrication technology that allows 200 units to be built on a single four-inch silicon wafer, it has a silicon base topped by a one-half micron layer of silicon nitride. The silicon nitride membrane, formed by etching the silicon away, holds a patterned platinum heater, called a microhotplate. A thin layer of an adsorbent material goes on the front surface of the heater. Gold pads surround the device and help to connect the platinum heater electrically to the macroscopic world.

The micro preconcentrator operates much like its larger relative. First, a small pump pulls air containing a chemical over the adsorbent material. Current flows through the platinum, heating up the microhotplate to 200 degrees C. The high temperature causes the chemical to be released from the adsorbent material so it can be analyzed by a micro detector system.

“All this happens in the blink of an eye,” Frye-Mason says. “It takes six milliseconds and 100 milliwatts of power to reach 200 degrees. That’s 1,000 times faster than using the conventional method.”

It does this because the device is so small that it doesn’t take much current or time to heat up. This small size and planar design make the device ideal for chip-based microanalytical systems such as the Sandia’s chem-lab-on-a-chip concept.

The adsorbent material most frequently used in testing the device has been a sol gel developed by Sandia researcher Jeff Brinker. The gel can be “tuned” to collect certain types of molecules and not others. The researchers have also tested other adsorbent materials with the microfabricated planar concentrator.

Manginell, who has been involved in the device’s design, modeling, fabrication, thermal testing, and packaging, says work on the miniaturized preconcentrator started about three years ago.

“The initial development was fast,” he recalls. “It took us six months to come up with a prototype. Since then we’ve been refining and modeling it.”


Story Source:

The above story is based on materials provided by Sandia National Laboratories. Note: Materials may be edited for content and length.


Cite This Page:

Sandia National Laboratories. "Tiny Sampling Device Promises Big Results For Detection And Analysis Of Chemicals." ScienceDaily. ScienceDaily, 31 August 2000. <www.sciencedaily.com/releases/2000/08/000831075507.htm>.
Sandia National Laboratories. (2000, August 31). Tiny Sampling Device Promises Big Results For Detection And Analysis Of Chemicals. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2000/08/000831075507.htm
Sandia National Laboratories. "Tiny Sampling Device Promises Big Results For Detection And Analysis Of Chemicals." ScienceDaily. www.sciencedaily.com/releases/2000/08/000831075507.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins