Featured Research

from universities, journals, and other organizations

Duke Eye Researchers Describe Cascade Of Events That May Lead To Retinal Degeneration

Date:
October 24, 2000
Source:
Duke University
Summary:
Duke University Medical Center researchers have shed new light on the process of hereditary retinal degeneration by demonstrating for the first time how the death of rod cells in the retina ultimately leads to the demise of cone cells, another retinal cell type.

DURHAM, N.C. - Duke University Medical Center researchers have shed new light on the process of hereditary retinal degeneration by demonstrating for the first time how the death of rod cells in the retina ultimately leads to the demise of cone cells, another retinal cell type.

Not only do these results help researchers better understand a disorder that ultimately leads to blindness, but the chain of events described is an elegant demonstration of how the body naturally compensates when one of its functions is compromised, said lead researcher Fulton Wong, research director of the Duke University Eye Center.

Wong studies retinitis pigmentosa (RP), a broad spectrum of hereditary eye disorders that typically begin with the early loss of "night vision," progressing to blindness over many years. RP is marked by the gradual degeneration of the specialized photoreceptor cells that line the retina along the back of the eye. These cells, better known as rods and cones, translate light that enters the eye into nerve impulses that travel to the brain for interpretation

"The million dollar question in retinitis pigmentosa has always been, 'How does a mutation in a rod-specific gene lead to the death of genetically normal cone cells," Wong said. "We have shown that the death of rods initiates a chain reaction of events that ultimately leads to the destruction of cone cells, and eventually blindness. During this slow process, the neural network in essence 'rewires' itself to maintain some degree of sight for some period of time."

The results of the team's study were published Monday in the November issue of the journal Nature Neuroscience. The research was funded by the National Institutes of Health, the Foundation Fighting Blindness and Research to Prevent Blindness.

So far, researchers have linked more than 30 genes to RP, which afflicts more than 100,000 Americans. In the typical course of the disease, which begins in the early years of life, the rods begin to die in a process known as apoptosis, or programmed cell death.

As night vision progressively worsens due to the loss of rods, the cones begin to die as well, which worsens the day vision. The whole process, which culminates in blindness, can take many decades to occur, Wong explained.

Since the disease progresses so slowly in humans, researchers use animal models in which the progression is much quicker. In his series of experiments, Wong made use of a special line of transgenic pigs he and Robert Petters at North Carolina State University created. The team also used a well-studied mouse model of retinal degeneration and found the same results.

The pig is an excellent model for studying degenerative retinal diseases, Wong said, because it has many rods and cones. Just as importantly, the structure of the pig eye is very similar to the human eye.

Wong's team focused on the so-called rod bipolar cells, specialized nerve cells that relay visual information collected by the rods to the nerves that ultimately carry the visual impulses back to the brain.

"We found that as the rods die, the rod bipolar cells connected to them are still intact and want to 'communicate' with other nerve cells," said You-Wei Peng, assistant research professor of ophthalmology and neurobiology and first author of the study. "Since they can no longer communicate with rod cells, they do the next best thing -- they start to connect to cone cells."

However, this new connection is a double-edged sword. On one hand, this new, though incorrect, connection preserves a degree of sight; on the other, the cone cells receive inappropriate signals which, over time, lead to their deaths.

"This is an elegant example of nature trying to make the best out of a bad situation," Wong said. "A new neural connection is made, and while it is an imperfect connection, it does allow some degree of sight to continue. In human terms, these connections bestow an extra decade or so of good, though progressively worsening, vision."

In broader terms, the finding of how the different types of nerve cells in the retina interact and respond to each other has applications throughout the body, Wong said.

"The retina is a part of the central nervous system, in many ways the most approachable part of the brain," Wong said. "In any network, it is important to know how the different types of cells react when one type is damaged or dies. These findings provide a greater understanding of the cascade of events that can occur within a neural network."

These findings are also important because they have implications for current research aimed at treating these retinal disorders.

"Although there are many different mutations that could begin the process, our data demonstrate that there is a 'common downstream' mechanism," Wong said. "Practically, it seems that these later steps in the disease process might be better targets for intervention than the individual gene mutations."

An additional offshoot of the study, Wong added, is that the pig model he and his colleagues developed has become accepted by the scientific community as a important new research tool, which in coming years should make it easier to test potential new therapies before trying them in humans.


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Cite This Page:

Duke University. "Duke Eye Researchers Describe Cascade Of Events That May Lead To Retinal Degeneration." ScienceDaily. ScienceDaily, 24 October 2000. <www.sciencedaily.com/releases/2000/10/001022202420.htm>.
Duke University. (2000, October 24). Duke Eye Researchers Describe Cascade Of Events That May Lead To Retinal Degeneration. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2000/10/001022202420.htm
Duke University. "Duke Eye Researchers Describe Cascade Of Events That May Lead To Retinal Degeneration." ScienceDaily. www.sciencedaily.com/releases/2000/10/001022202420.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins