Featured Research

from universities, journals, and other organizations

University Of Pittsburgh Scientists Identify How Brain "Gets Ready" To Perform

Date:
November 13, 2000
Source:
University Of Pittsburgh Medical Center
Summary:
Researchers at the University of Pittsburgh School of Medicine have uncovered the mechanism by which the brain prepares itself to solve a problem. The Pitt researchers, led by Cameron Carter, M.D., associate professor of psychiatry, conducted a series of functional magnetic resonance imaging (fMRI) studies showing that the part of the brain called the dorsolateral prefrontal cortex (DLPFC) becomes active when a person is preparing for a task.

NEW ORLEANS, Nov. 6 – Researchers at the University of Pittsburgh School of Medicine have uncovered the mechanism by which the brain prepares itself to solve a problem. Their research was presented today at the 30th Annual Meeting of the Society for Neuroscience.

Related Articles


The Pitt researchers, led by Cameron Carter, M.D., associate professor of psychiatry, conducted a series of functional magnetic resonance imaging (fMRI) studies showing that the part of the brain called the dorsolateral prefrontal cortex (DLPFC) becomes active when a person is preparing for a task. The more it activates, the better that person performs a given task. Yet, absent anticipation that a task needs to be performed, the DLPFC does not activate at all. According to Dr. Carter, the data suggest that DLPFC activation is associated with representing and maintaining the attentional demands of a task.

“This part of the brain plays a unique role in preparing us to perform a cognitive task,” said Dr. Carter. “The DLPFC seems to look forward to what the brain needs to do next in order to perform the task better.”

The current research adds to Dr. Carter’s previous work, which identified the brain’s error-checking device, and shows how several areas in the brain perform unique tasks in a team effort to solve problems.

According to Dr. Carter, this research may give scientists a greater understanding of psychiatric disorders, such as schizophrenia, by identifying the pathways normal brains use to perform cognitive functions and finding out how they differ in those with mental illness.

The researchers assessed the DLPFC – located on the outer surface of the frontal lobes of the brain – in relation to other brain regions linked to performance by devising tests that allowed them to watch subjects’ brains respond to a variety of cognitive tasks during fMRI imaging of the brain.

The first study employed a task-switching Stroop test, in which subjects were challenged to either name the color a word was written in (when the word itself spelled a color) or just read the word out loud. This is difficult because the test-taker has to ignore the word and pay attention to the color, say for example if the word “red” is in blue ink. In contrast, having to read the word itself is easy. When participants knew they would have to say the color of the letters, their DLPFC kicked into high gear to help them prepare. The more activity a subject had in his DLPFC, the better he was able to do on the test.

The second study was a task-switching experiment in which tasks were equally difficult and in which task-related conflict, but not response conflict, was elicited. To determine the role of the DLPFC in task preparation, on some trials subjects knew that they were going to have to switch to a different task, on others they did not. When a person knew they would have to switch to a different task, the DLPFC would activate. When the person was not told about the upcoming task, or when they simply repeated the task that they had just performed, the DLPFC stayed quiet.

“In both studies, DLPFC activity corresponded with good performance,” said Dr. Carter. “Further, we found that people whose brains can activate the DLPFC quickly as they get ready to do a task perform much better than those whose brains can’t.”

Other areas of the brain also play a role in performance, said Dr. Carter. In the first test, a person’s anterior cingulate cortex (ACC), located on the inner surface of the frontal lobes – which acts as a yellow flag for the brain to be watchful for mistakes – became active when subjects knew they would have to identify colors when the word and colors were different, but not when the word and color were the same. In the second test, subjects’ ACCs were not as active because the tests were not designed to elicit response conflict. The parietal cortex, toward the back of the brain, however, was active when people prepared for all tasks, but its response was not specific to whether they were preparing to perform the same task or different tasks.

“The bottom line is that although many regions of the brain work together and participate in executive functions, different regions appear to make unique contributions to the process. The DLPFC seems to be uniquely involved in preparing attention for what is just about to happen and is more active when a person has to prepare to overcome a habitual response or switch from one task to another. The parietal cortex lets a person prepare attention or link appropriate stimuli to their correct response, and the ACC detects conflict and lets a person know when he is not doing very well,” said Dr. Carter.

In addition to Dr. Carter, other Pitt researchers involved include Angus MacDonald (a graduate student in psychology), Stefan Ursu (a graduate student in neuroscience) and Andy Stenger, M.D., assistant professor of radiology, University of Pittsburgh School of Medicine and Myeong Ho Sohn and John Anderson, psychologists at Carnegie Mellon University.


Story Source:

The above story is based on materials provided by University Of Pittsburgh Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Pittsburgh Medical Center. "University Of Pittsburgh Scientists Identify How Brain "Gets Ready" To Perform." ScienceDaily. ScienceDaily, 13 November 2000. <www.sciencedaily.com/releases/2000/11/001110073113.htm>.
University Of Pittsburgh Medical Center. (2000, November 13). University Of Pittsburgh Scientists Identify How Brain "Gets Ready" To Perform. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2000/11/001110073113.htm
University Of Pittsburgh Medical Center. "University Of Pittsburgh Scientists Identify How Brain "Gets Ready" To Perform." ScienceDaily. www.sciencedaily.com/releases/2000/11/001110073113.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
Yoga Could Be As Beneficial For The Heart As Walking, Biking

Yoga Could Be As Beneficial For The Heart As Walking, Biking

Newsy (Dec. 17, 2014) Yoga can help your weight, blood pressure, cholesterol and heart just as much as biking and walking does, a new study suggests. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins