Featured Research

from universities, journals, and other organizations

Sustained Use Of Anti-Depressants Increases Cell Growth And Protects Cells In The Brain

Date:
December 15, 2000
Source:
Yale University
Summary:
Continued use of anti-depressants leads to new cell growth in an area of the brain known to suffer cell death and atrophy as a result of depression and stress, a study by Yale researchers shows.

New Haven, Conn. – Continued use of anti-depressants leads to new cell growth in an area of the brain known to suffer cell death and atrophy as a result of depression and stress, a study by Yale researchers shows.

Related Articles


Depression affects an estimated 12 percent to 17 percent of the population at some point during their lifetime. Anti-depressants are commonly prescribed for depression and other affective disorders, but the drugs’ therapeutic effects on the molecular and cellular level are not clearly understood.

"The findings of our study are that chronic administration of anti-depressants increases the number of neurons in the adult hippocampal ," said Ronald Duman, M.D.., professor of psychiatry and pharmacology. "This could explain in part how anti-depressants produce their therapeutic response." Duman was senior author of the study published Dec. 15 in The Journal of Neuroscience.

The hippocampus is part of the limbic brain that is involved in learning, memory, mood and emotion. It is one of only a few regions of the brain where production of neurons occurs in the adult brain of animals, including humans. Several studies have demonstrated that stressful experiences, both physical and psychological, lead to neuronal loss or atrophy in the hippocampus. Other studies show that anti-depressants can block this cell loss.

"In humans, brain imaging studies demonstrate that in patients with depression or post traumatic stress syndrome there is a decrease in volume of the hippocampus that is thought to be related to the neuronal atrophy and loss," Duman said. "The results of our study demonstrate that anti-depressants can reverse or block further loss of neurons in the hippocampus by increasing neurogenesis (new cell growth)."

Duman’s laboratory has been studying the mechanism of action of anti-depressants in rodents for over 15 years. The researchers have focused on cellular actions of anti-depressants, looking at the role of the intracellular signal transduction pathways that control neuronal function. They have identified several actions of anti-depressants which indicate that anti-depressants influence the survival or the number of neurons in the hippocampus.

This study was intended to look at whether the anti-depressants increased the birth of neurons in the hippocampus. The researchers tested several different classes of anti-depressant drugs, as well as electroconvulsive seizure therapy (ECS), and an anti-psychotic medication.

ECS is clinically the most effective treatment for cases of depression that are resistant to available drug treatments. As expected, chronic, or repeated, administration of ECS increased the number of neurons in the hippocampus of the brain by 50 percent. The chemical anti-depressants tested increased the number of neurons in the same area by 20 percent to 40 percent.

The anti-depressants that were administered included a monoamineoxidase inhibitor (tranlcypromine), a serotonin-selective reuptake inhibitor (fluoxetine), and a norepinephrine-selective reuptake inhibitor (reboxetine).

However, brief or "acute" (one to five days) administration of the anti-depressants did not lead to any significant cell change. Results were seen after 14 to 28 days of administration, which is consistent with treatment regimens for the therapeutic response to anti-depressants.

Administration of the anti-psychotic drug haloperidol, which is a non-antidepressant psychotropic drug, also did not produce any significant cell change in this area of the brain. In addition, the researchers recently have demonstrated that morphine, another non-antidepressant psychotropic drug, decreases the number of cells in the hippocampal area.

Co-authors of the study were Jessica Malberg and Amelia Eisch, both postdoctoral fellows in psychiatry, and Eric Nestler, formerly a professor of psychology, pharmacology and neurobiology at Yale.


Story Source:

The above story is based on materials provided by Yale University. Note: Materials may be edited for content and length.


Cite This Page:

Yale University. "Sustained Use Of Anti-Depressants Increases Cell Growth And Protects Cells In The Brain." ScienceDaily. ScienceDaily, 15 December 2000. <www.sciencedaily.com/releases/2000/12/001215081931.htm>.
Yale University. (2000, December 15). Sustained Use Of Anti-Depressants Increases Cell Growth And Protects Cells In The Brain. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2000/12/001215081931.htm
Yale University. "Sustained Use Of Anti-Depressants Increases Cell Growth And Protects Cells In The Brain." ScienceDaily. www.sciencedaily.com/releases/2000/12/001215081931.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins