Featured Research

from universities, journals, and other organizations

Sonic Hedgehog Shapes The Brain

Date:
March 13, 2001
Source:
University Of Chicago Medical Center
Summary:
The size and shape of brain structures can be controlled by a signaling molecule known as Sonic Hedgehog, University of Chicago researchers show in a paper the March 16, 2001, issue of Science.

The size and shape of brain structures can be controlled by a signaling molecule known as Sonic Hedgehog, University of Chicago researchers show in a paper the March 16, 2001, issue of Science.

Related Articles


During development, the brain becomes organized into highly specialized groups of neurons, called brain nuclei, each expressing its own set of genes and participating in very specific neural functions. Little is known, however, about how brain nuclei of the appropriate size, shape and location are generated. The researchers show that this process can be coordinated by the secretion of a single molecule, Sonic Hedgehog, that operates as a 'positional signal'.

"A positional signal is a neat mechanism for creating patterns of different types of cells," said Cliff Ragsdale, Ph.D., assistant professor in neurobiology, pharmacology and physiology at the University of Chicago, and principal investigator in the study. "Target cells respond differently to a signaling molecule according to their distance from the source of the signal."

Ragsdale's group studies this process in the midbrain, a major division of the central nervous system, of embryo chicks. The midbrain was an attractive model for studying the formation of the organization of brain, or morphogenesis, because it is very simply organized during development into a set of cell columns, called arcs, each with distinct molecular identities.

The group found that Sonic Hedgehog is normally expressed along the midline during midbrain development, suggesting that Sonic Hedgehog might be the morphogen setting up the midbrain pattern.

This signal is called a morphogen because it is a "form-producing substance." Though the idea of morphogens has been around since 1952 when the British mathematician Alan Turing coined the term, it is only in the last ten years that true morphogens used in animal development have been molecularly identified.

To study the role of Sonic Hedgehog in this process, the group transferred the gene for Sonic Hedgehog into the midbrain of two-day-old embryo chicks. The brains were examined when the embryos were five days old, when all the midbrain arcs are present.

"We used an extremely efficient gene delivery system called electroporation," said Seema Agarwala, Ph.D., research associate in neurobiology, pharmacology and physiology at the University of Chicago, and lead author of the study. "This allowed us to control precisely the time and place where the additional Sonic Hedgehog was expressed."

"We put the molecule in the dorsal midbrain, an area that never sees Sonic Hedgehog," said Agarwala. "To our surprise, we got a complete duplication of the pattern we saw in ventral midbrain, a full set of arcs. The Sonic Hedgehog was enough to make dorsal midbrain tissue into ventral midbrain tissue, producing the entire pattern."

In the next set of experiments, the researchers showed that Sonic Hedgehog could control both shape and size of the pattern produced. When the researchers introduced a linear source of Sonic Hedgehog perpendicular to the normal source, they produced a series of stripes that wrapped around the brain like a barber pole. In a further set of experiments, the researchers showed that a spot source of sonic hedgehog turned the arcs into a pattern very much like the eyespot of a butterfly's wing.

"What we have found in brain development is actually a very simple principle", said Ragsdale. "It was known that morphogens like Sonic Hedgehog can induce different cell-types according to their concentration, but it was never clear how you got those different cell-types to form patterns of the correct size and shape. What we have shown is that the size and shape of the morphogen source can control the size and shape of the cell patterns produced."

"This single molecule has tremendous power to shape the brain," said Ragsdale.

The name Sonic Hedgehog originated with a mutant fruit fly embryo that had cuticle all over its body. Researchers found three different versions of the "hedgehog" gene but only two kinds of real hedgehogs, so they named the third gene after the cartoon character.

Timothy Sanders, Ph.D., of the University of Chicago, was an additional author of the study, which became available online March 9.

This work was supported by the National Institute of Neurological Disorders and Stroke of the National Institutes of Health.


Story Source:

The above story is based on materials provided by University Of Chicago Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Chicago Medical Center. "Sonic Hedgehog Shapes The Brain." ScienceDaily. ScienceDaily, 13 March 2001. <www.sciencedaily.com/releases/2001/03/010312072303.htm>.
University Of Chicago Medical Center. (2001, March 13). Sonic Hedgehog Shapes The Brain. ScienceDaily. Retrieved March 4, 2015 from www.sciencedaily.com/releases/2001/03/010312072303.htm
University Of Chicago Medical Center. "Sonic Hedgehog Shapes The Brain." ScienceDaily. www.sciencedaily.com/releases/2001/03/010312072303.htm (accessed March 4, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Wednesday, March 4, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

This Nasal Treatment Could Help Ease Migraine Pain

This Nasal Treatment Could Help Ease Migraine Pain

Newsy (Mar. 2, 2015) Researchers gave lidocaine to 112 patients, and about 88 percent of the subjects said they needed less migraine-relief medicine the next day. Video provided by Newsy
Powered by NewsLook.com
How Facebook Use Can Lead To Depression

How Facebook Use Can Lead To Depression

Newsy (Mar. 1, 2015) Margaret Duffy of the University of Missouri talks about her study on the social network and the envy and depression that Facebook use can cause. Video provided by Newsy
Powered by NewsLook.com
The Best Foods to Battle Stress

The Best Foods to Battle Stress

Buzz60 (Feb. 26, 2015) If you&apos;re dealing with anxiety, there are a few foods that can help. Krystin Goodwin (@krystingoodwin) has the best foods to tame stress. Video provided by Buzz60
Powered by NewsLook.com
Sleeping Too Much Or Too Little Might Increase Stroke Risk

Sleeping Too Much Or Too Little Might Increase Stroke Risk

Newsy (Feb. 26, 2015) People who sleep more than eight hours per night are 45 percent more likely to have a stroke, according to a University of Cambridge study. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins