Featured Research

from universities, journals, and other organizations

Sonic Hedgehog Shapes The Brain

Date:
March 13, 2001
Source:
University Of Chicago Medical Center
Summary:
The size and shape of brain structures can be controlled by a signaling molecule known as Sonic Hedgehog, University of Chicago researchers show in a paper the March 16, 2001, issue of Science.

The size and shape of brain structures can be controlled by a signaling molecule known as Sonic Hedgehog, University of Chicago researchers show in a paper the March 16, 2001, issue of Science.

Related Articles


During development, the brain becomes organized into highly specialized groups of neurons, called brain nuclei, each expressing its own set of genes and participating in very specific neural functions. Little is known, however, about how brain nuclei of the appropriate size, shape and location are generated. The researchers show that this process can be coordinated by the secretion of a single molecule, Sonic Hedgehog, that operates as a 'positional signal'.

"A positional signal is a neat mechanism for creating patterns of different types of cells," said Cliff Ragsdale, Ph.D., assistant professor in neurobiology, pharmacology and physiology at the University of Chicago, and principal investigator in the study. "Target cells respond differently to a signaling molecule according to their distance from the source of the signal."

Ragsdale's group studies this process in the midbrain, a major division of the central nervous system, of embryo chicks. The midbrain was an attractive model for studying the formation of the organization of brain, or morphogenesis, because it is very simply organized during development into a set of cell columns, called arcs, each with distinct molecular identities.

The group found that Sonic Hedgehog is normally expressed along the midline during midbrain development, suggesting that Sonic Hedgehog might be the morphogen setting up the midbrain pattern.

This signal is called a morphogen because it is a "form-producing substance." Though the idea of morphogens has been around since 1952 when the British mathematician Alan Turing coined the term, it is only in the last ten years that true morphogens used in animal development have been molecularly identified.

To study the role of Sonic Hedgehog in this process, the group transferred the gene for Sonic Hedgehog into the midbrain of two-day-old embryo chicks. The brains were examined when the embryos were five days old, when all the midbrain arcs are present.

"We used an extremely efficient gene delivery system called electroporation," said Seema Agarwala, Ph.D., research associate in neurobiology, pharmacology and physiology at the University of Chicago, and lead author of the study. "This allowed us to control precisely the time and place where the additional Sonic Hedgehog was expressed."

"We put the molecule in the dorsal midbrain, an area that never sees Sonic Hedgehog," said Agarwala. "To our surprise, we got a complete duplication of the pattern we saw in ventral midbrain, a full set of arcs. The Sonic Hedgehog was enough to make dorsal midbrain tissue into ventral midbrain tissue, producing the entire pattern."

In the next set of experiments, the researchers showed that Sonic Hedgehog could control both shape and size of the pattern produced. When the researchers introduced a linear source of Sonic Hedgehog perpendicular to the normal source, they produced a series of stripes that wrapped around the brain like a barber pole. In a further set of experiments, the researchers showed that a spot source of sonic hedgehog turned the arcs into a pattern very much like the eyespot of a butterfly's wing.

"What we have found in brain development is actually a very simple principle", said Ragsdale. "It was known that morphogens like Sonic Hedgehog can induce different cell-types according to their concentration, but it was never clear how you got those different cell-types to form patterns of the correct size and shape. What we have shown is that the size and shape of the morphogen source can control the size and shape of the cell patterns produced."

"This single molecule has tremendous power to shape the brain," said Ragsdale.

The name Sonic Hedgehog originated with a mutant fruit fly embryo that had cuticle all over its body. Researchers found three different versions of the "hedgehog" gene but only two kinds of real hedgehogs, so they named the third gene after the cartoon character.

Timothy Sanders, Ph.D., of the University of Chicago, was an additional author of the study, which became available online March 9.

This work was supported by the National Institute of Neurological Disorders and Stroke of the National Institutes of Health.


Story Source:

The above story is based on materials provided by University Of Chicago Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Chicago Medical Center. "Sonic Hedgehog Shapes The Brain." ScienceDaily. ScienceDaily, 13 March 2001. <www.sciencedaily.com/releases/2001/03/010312072303.htm>.
University Of Chicago Medical Center. (2001, March 13). Sonic Hedgehog Shapes The Brain. ScienceDaily. Retrieved January 28, 2015 from www.sciencedaily.com/releases/2001/03/010312072303.htm
University Of Chicago Medical Center. "Sonic Hedgehog Shapes The Brain." ScienceDaily. www.sciencedaily.com/releases/2001/03/010312072303.htm (accessed January 28, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Wednesday, January 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

City Divided: A Look at Model Schools in the TDSB

City Divided: A Look at Model Schools in the TDSB

The Toronto Star (Jan. 27, 2015) Model schools are rethinking how they engage with the community to help enhance the lives of the students and their parents. Video provided by The Toronto Star
Powered by NewsLook.com
Man Saves Pennies For 65 Years

Man Saves Pennies For 65 Years

Rooftop Comedy (Jan. 26, 2015) A man in Texas saved every penny he found for 65 years, and this week he finally cashed them in. Bank tellers at Prosperity Bank in Slaton, Texas were shocked when Ira Keys arrived at their bank with over 500 pounds of loose pennies stored in coffee cans. After more than an hour of sorting and counting, it turned out the 81 year-old was in possession of 81,600 pennies, or $816. And he&apos;s got more at home! Video provided by Rooftop Comedy
Powered by NewsLook.com
How Technology Is Ruining Snow Days For Students

How Technology Is Ruining Snow Days For Students

Newsy (Jan. 25, 2015) More schools are using online classes to keep from losing time to snow days, but it only works if students have Internet access at home. Video provided by Newsy
Powered by NewsLook.com
Weird Things Couples Do When They Lose Their Phone

Weird Things Couples Do When They Lose Their Phone

BuzzFeed (Jan. 24, 2015) Did you back it up? Do you even know how to do that? Video provided by BuzzFeed
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins