Featured Research

from universities, journals, and other organizations

Polymer Gel Holds Promise For Therapeutics Delivery And Tissue Engineering

Date:
April 3, 2001
Source:
Pacific Northwest National Laboratory
Summary:
A new polymer-based material with unique gelling properties found useful in medical applications ranging from targeted cancer treatment to tissue engineering has been developed by researchers at the Department of Energy's Pacific Northwest National Laboratory.

RICHLAND, Wash. - A new polymer-based material with unique gelling properties found useful in medical applications ranging from targeted cancer treatment to tissue engineering has been developed by researchers at the Department of Energy's Pacific Northwest National Laboratory.

Called a stimuli-sensitive polymer, the material is designed to change immediately from a liquid into a gel in response to stimulus, such as an increase in temperature. This feature would enable physicians to inject the mixture of the polymer and a medicinal solution directly into a specific target in the body, where it would warm and instantly gel.

"Stimuli-sensitive gels show promise for the effective treatment of inoperable tumors," said Anna Gutowska, senior research scientist at PNNL and lead developer of the gel. "While much more research remains to be done before this becomes an accepted medical procedure, we are very excited about its potential."

One of the more promising therapeutic applications is targeted delivery of medical isotopes or chemotherapy drugs to treat inoperable or difficult-to-treat solid tumors, such as those of the liver, pancreas, brain, breast and prostate.

This year, approximately 179,000 new cases of prostate cancer will be diagnosed, according to the American Cancer Society. The gel may be applicable as an improved therapy for early-stage prostate cancer, for example.

In this application, the polymer solution would be mixed with a medical isotope or chemotherapy drug, then injected into the tumor where body heat would cause instant gelling. Because the gel holds the therapeutic at the target site, developers anticipate being able to safely deliver a uniform dose to cancer cells while minimizing damage to surrounding healthy tissue.

In preliminary tests, the gel appears to hold therapeutic isotopes in place. Furthermore, the gel appears to be compatible with both beta- and gamma-emitting isotopes, which would enable physicians to select the most effective medical isotope for individual treatment needs.

While initial research was funded by DOE, PNNL now is applying National Institutes of Health funding to optimize the material's performance and investigate potential long-term toxic effects of leaving the material in the body, though preliminary studies show the gel to be benign.

In related research, PNNL is collaborating with the Medical University of South Carolina to test a biodegradable version of the polymer gel to support repair of articular cartilage - the durable type of cartilage that provides cushion between joints.

Once injured, articular cartilage doesn't heal well, or typically at all on its own. Consequently, more than one million cartilage repair surgeries are conducted annually. However, there are limitations to the effectiveness of these surgeries because physicians have been unable to spur growth of articular cartilage inside the body. Therefore, cartilage cells, called chondrocytes, instead are extracted from a different site within the body for cultivation in the laboratory. Not only does this create another defect, but physicians have been unable to cultivate chondrocytes with all the properties required to generate articular cartilage. Rather, a weaker, less durable type called fibrocartilage forms.

Through a two-year, DOE-funded project, Gutowska and collaborators at the Medical University of South Carolina are developing two components to support the successful repair of articular cartilage. The first is a three-dimensional cell culture system to support the in-laboratory growth of chondrocytes that retain the properties necessary for articular cartilage repair. A patent recently was issued for this technology. The second component is a biodegradable polymer gel that can be injected into the defect to serve as a temporary synthetic "scaffold" to support growth of the injected chondrocytes. Testing of the biodegradable gel currently is taking place at the Medical University of South Carolina.

"Our aim is to develop a gel that supports the propagation of articular cartilage-forming cells not only in the laboratory, but directly at the site of injury," Gutowska said. In addition, the three-dimensional cell culture system may be applicable to support future tissue engineering processes, such as the cultivation of stem cells from non-embryonic sources.

Business inquiries on polymer gel should be directed to Erik Stenehjem at 509-372-4212. Information on other PNNL technologies should be directed to 1-888-375-PNNL or e-mail: inquiry@pnl.gov

Pacific Northwest National Laboratory is a DOE research facility and delivers breakthrough science and technology in the areas of environment, energy, health, fundamental sciences and national security. Battelle, based in Columbus, Ohio, has operated PNNL for DOE since 1965.


Story Source:

The above story is based on materials provided by Pacific Northwest National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Pacific Northwest National Laboratory. "Polymer Gel Holds Promise For Therapeutics Delivery And Tissue Engineering." ScienceDaily. ScienceDaily, 3 April 2001. <www.sciencedaily.com/releases/2001/03/010329075756.htm>.
Pacific Northwest National Laboratory. (2001, April 3). Polymer Gel Holds Promise For Therapeutics Delivery And Tissue Engineering. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2001/03/010329075756.htm
Pacific Northwest National Laboratory. "Polymer Gel Holds Promise For Therapeutics Delivery And Tissue Engineering." ScienceDaily. www.sciencedaily.com/releases/2001/03/010329075756.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com
Tooth Plaque Provides Insight Into Diets Of Ancient People

Tooth Plaque Provides Insight Into Diets Of Ancient People

Newsy (July 19, 2014) Research on plaque from ancient teeth shows that our prehistoric ancestor's had a detailed understanding of plants long before developing agriculture. Video provided by Newsy
Powered by NewsLook.com
Contaminated Water Kills 3 Babies in South African Town

Contaminated Water Kills 3 Babies in South African Town

AFP (July 18, 2014) Contaminated water in South Africa's northwestern town of Bloemhof kills three babies and hospitalises over 500 people. The incident highlights growing fears over water safety in South Africa. Duration: 02:22 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins