Featured Research

from universities, journals, and other organizations

Genetic Deficiency May Explain Sudden Infant Death Syndrome

Date:
June 4, 2001
Source:
Wake Forest University Baptist Medical Center
Summary:
A missing enzyme may be one possible explanation for sudden infant death syndrome, according to a report by a Wake Forest University School of Medicine gastroenterologist in the June issue of The Journal of Clinical Investigation. The missing enzyme is called mitochondrial trifunctional protein and it is a key step in providing energy for skeletal muscle and the heart and for metabolism in the liver.

WINSTON-SALEM, N.C. - A missing enzyme may be one possible explanation for sudden infant death syndrome, according to a report by a Wake Forest University School of Medicine gastroenterologist in the June issue of The Journal of Clinical Investigation.

The missing enzyme is called mitochondrial trifunctional protein and it is a key step in providing energy for skeletal muscle and the heart and for metabolism in the liver, according to Jamal A. Ibdah, M.D., Ph.D, assistant professor of internal medicine (gastroenterology) at Wake Forest. The energy ordinarily comes from metabolism of fatty acids.

Ibdah set out to demonstrate effects in mice by "knocking out" the gene that produces mitochondrial trifunctional protein. The mice pups developed low blood sugar (neonatal hypoglycemia) and died suddenly 6 to 36 hours after birth.

This knockout, developed at Wake Forest University, "is the first knockout that models a genetic disease of the protein that breaks down fatty acids," said Ibdah.

In a knockout mouse, a specific gene is removed from the rodent, modeling the disease process in people who are born without that particular gene.

"Our results demonstrate that the mitochondrial-trifunctional-protein-deficient knockout mouse is a valid model for human mitochondrial trifunctional protein deficiency and that it has important implications for human disease," Ibdah said. "Many of the associations that were questioned in humans are confirmed clearly in this knockout."

He said the study demonstrates that the enzyme is essential for fetal development and survival of the newborn. "Deficiency of mitochondrial trifunctional protein causes fetal growth retardation, neonatal hypoglycemia and sudden death," Ibdah said. "All are serious and common human disorders."

He said the mouse model provides mechanisms and understanding for the human disease. "It confirms that there is an association between impairment in breaking down fat and sudden death. It makes it clear cut that human beings after birth require these enzymes to survive."

Ibdah said that because the enzyme is missing, fatty acid products accumulate, producing a toxic effect that probably leads to heart arrythmias as well as respiratory arrest.

The mouse model also demonstrates that these enzymes are important for fetal growth and development. "When they are not present, there is fetal growth retardation," Ibdah said. Previously, he said, it had been thought that these enzymes weren't needed by the fetus because the mother was supplying all the needed nutrients through the placenta.

Making the knockout mouse requires manipulation of the mouse stem cells. "You create a mutation in a specific location on the gene," said Ibdah. "It is much more labor intensive and more tedious than creation of a transgenic mouse, in which you inject DNA into a fertilized egg." He said the characterization of the mouse model was done in conjunction with Mark Cline, D.V.M., Ph.D., associate professor of pathology (comparative medicine.)

Besides Wake Forest researchers, the multi-center team includes investigators at the Mayo Clinic, the University of Texas Southwestern Medical Center at Dallas and Vanderbilt University School of Medicine.


Story Source:

The above story is based on materials provided by Wake Forest University Baptist Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Wake Forest University Baptist Medical Center. "Genetic Deficiency May Explain Sudden Infant Death Syndrome." ScienceDaily. ScienceDaily, 4 June 2001. <www.sciencedaily.com/releases/2001/06/010601082316.htm>.
Wake Forest University Baptist Medical Center. (2001, June 4). Genetic Deficiency May Explain Sudden Infant Death Syndrome. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2001/06/010601082316.htm
Wake Forest University Baptist Medical Center. "Genetic Deficiency May Explain Sudden Infant Death Syndrome." ScienceDaily. www.sciencedaily.com/releases/2001/06/010601082316.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins