Featured Research

from universities, journals, and other organizations

Color-Coded Quantum Dots For Fast DNA Testing

Date:
July 18, 2001
Source:
The Whitaker Foundation
Summary:
Indiana University researchers have shown how to identify tens of thousands of genes all at once by using tiny semiconductor crystals that dazzle in ultraviolet light. The technique works like a bar code with each color and intensity combination corresponding to an individual gene. The researchers predict that up to 40,000 genes or proteins could be studied in as little as 10 minutes.

ARLINGTON, Va., July 16, 2001 --- Indiana University researchers have shown how to identify tens of thousands of genes all at once by using tiny semiconductor crystals that dazzle in ultraviolet light.

The technique works like a bar code with each color and intensity combination corresponding to an individual gene. The researchers predict that up to 40,000 genes or proteins could be studied in as little as 10 minutes.

Competing technologies include the lab-on-a-chip, or biochip, in which miniature DNA-decoding troughs are etched onto flat surfaces. These devices can take as long as 24 hours to identify a group of genes.

Researchers have tried for years to use tiny crystals, called quantum dots, as glowing labels for genes, proteins, and other biological molecules. Quantum dots promise faster, more flexible, less costly tests for on-the-spot biological analysis or patient diagnosis. But they have been difficult to collect and manipulate with enough precision to be useful.

"We solved all of the technical problems," said biomedical engineer Shuming Nie, Ph.D., of Indiana University, who led the research published in the July issue of the journal Nature Biotechnology. "The idea is very simple and straightforward, but I think we're the first ones to make it work."

Quantum dots display a rainbow of colors. Each dot is made from semiconductor crystals of cadmium selenide encased in a zinc sulfide shell as small as 1 nanometer in diameter (one-millionth of a millimeter). In ultraviolet light, each dot radiates a brilliant color.

Nie's group found a way to capture the quantum dots in specific quantities and in a wide range of colors and various intensities. Using six colors, each with 10 intensity levels, it would be possible to code for 1 million genes. But the group said that for accurate detection without any spectral overlap, a reasonable range would be 10,000 to 40,000 different codes.

To capture the quantum dots, they made porous microbeads of polystryene (which is used to make Styrofoam brand plastic foam) and seeded these with the zinc sulfide-capped cadmium selenide nanocrystals. They made both the beads and the quantum dots water repellent. This encouraged the quantum dots to move into the pores.

"If they are both water repellent, they will like each other," Nie said. "Just like water and oil don't mix: water likes water and oil likes oil." Once the quantum dots infiltrated the pores, the researchers sealed the pores.

To demonstrate the use of these quantum dots in DNA analysis, the researchers prepared microbeads of three colors, or spectral wavelengths, and attached them to strips of genetic material. Each color corresponded with a specific DNA sequence. These were used as probes to seek out complementary pieces of genetic material in a DNA mixture.

Among the advantages of the quantum dot system is its flexibility. If you want to add a new gene code to the test, you mix a new batch of beads. This takes about half an hour. Adding a new gene to a DNA chip means going back to the manufacturing plant to design and fabricate a new chip.

"We put the biology and engineering together to make this work," Nie said. He plans to test the system on as many as 1,000 genes at a time. But to scale it up to tens of thousands of genes or proteins will be the task of an industrial company.

Nie said the technology has not been licensed, but several companies are engaged in similar research, including Quantum Dot Corporation, which is developing a number of biological uses for quantum dots.

The current work was supported in part by the National Institutes of Health and the Department of Energy. Nie's earlier research in this area was supported by a Biomedical Engineering Research Grant from The Whitaker Foundation and a grant from the Beckman Foundation.


Story Source:

The above story is based on materials provided by The Whitaker Foundation. Note: Materials may be edited for content and length.


Cite This Page:

The Whitaker Foundation. "Color-Coded Quantum Dots For Fast DNA Testing." ScienceDaily. ScienceDaily, 18 July 2001. <www.sciencedaily.com/releases/2001/07/010718091158.htm>.
The Whitaker Foundation. (2001, July 18). Color-Coded Quantum Dots For Fast DNA Testing. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2001/07/010718091158.htm
The Whitaker Foundation. "Color-Coded Quantum Dots For Fast DNA Testing." ScienceDaily. www.sciencedaily.com/releases/2001/07/010718091158.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins