Featured Research

from universities, journals, and other organizations

Rutgers Professor Details How Polymers Improve Drug Delivery And Make Possible Crystal-Clear Water-Based Cosmetics

Date:
August 31, 2001
Source:
Rutgers, The State University Of New Jersey
Summary:
Polymers that may improve drug delivery or enhance cosmetic products were highlighted in a paper presented Monday, August 27 by Kathryn E. Uhrich, Rutgers associate professor of chemistry, at the 222nd national meeting of the American Chemical Society in Chicago, Ill.

New Brunswick/Piscataway - Polymers that may improve drug delivery or enhance cosmetic products were highlighted in a paper presented Monday, August 27 by Kathryn E. Uhrich, Rutgers associate professor of chemistry, at the 222nd national meeting of the American Chemical Society in Chicago, Ill.

ACS, which holds two national meetings a year, is the world's largest scientific society. The paper, "Designing Polymeric Micelles for Drug Transport," is a summary of Uhrich's work on unique polymers known as amphiphilic starlike macromolecules (ASMs).

These molecules act like tiny carrying cases for drugs and other types of oily or greasy molecules, such as fragrance oils, that don't dissolve easily in water. The ASMs make the drugs water-soluble so they can be readily transported through the skin, eyes, intestinal walls or any other body tissue.

Most drugs are hydrophobic and thus not easily soluble in the bloodstream, Uhrich explained. To make sure drugs get to their destination within the body, they are often delivered inside fatty globules known as liposomes. But liposomes aren't always good carriers because heat and enzymes can break them up and allow the drug to escape in an uncontrolled fashion.

Uhrich reports that adding a small amount of ASM polymer to the liposome solution resolves both the water solubility and drug control problems because it stabilizes the liposomes. "It appears that it takes only a small amount of the polymer to stabilize the liposomes," she says. "We're still not sure exactly how it works, but we're studying it."

Uhrich and her team have also found that by altering the polymer structure in certain ways, they can control the rate at which the drug is released. Designing polymers that are more "greasy" or more hydrophobic, will cause the drug to be released slowly, while a polymer that's less hydrophobic will release its drugs faster.

"We are reaching a point in our research where we believe we will be able to design the carrier to meet a drug's specific time-release requirements and make it stay in the bloodstream for a long or short period of time so that the patient gets the maximum benefits of the drug," she said.

So far, Uhrich's research team has tested the polymer systems on several molecules, including beta-blocker drugs used to treat heart disease and antibiotics. "We are searching for the best match between the polymer and the drug, where the drug is released over a desirable time period," she noted.

Uhrich has latched onto another unique property of the polymers – their ability to turn liposomes from opaque substances into crystal-clear ones -- to develop crystal-clear beauty products. The team has found that adding a small amount of polymer can change the liposome solution from opaque to clear, a "very desirable commodity in the world of cosmetics right now," she noted, "judging from the number of cosmetic companies that have expressed interest in the concept.

"Cosmetics weren't my first goal," adds Uhrich, "but it makes sense. The same properties needed for transporting drugs -- such as biocompatibility and water solubility -- are needed for beauty aids. If you can use polymers to carry 'greasy' drugs within your body, why not use them to carry 'greasy' dyes or fragrances outside the body?"

At present, Uhrich's polymers are targeted at drugs and cosmetics, but many other potential uses exist for the ASM polymer's powers. "They could work with anything that's greasy or oily that you may want to make into a water solution or make clear," Uhrich notes.


Story Source:

The above story is based on materials provided by Rutgers, The State University Of New Jersey. Note: Materials may be edited for content and length.


Cite This Page:

Rutgers, The State University Of New Jersey. "Rutgers Professor Details How Polymers Improve Drug Delivery And Make Possible Crystal-Clear Water-Based Cosmetics." ScienceDaily. ScienceDaily, 31 August 2001. <www.sciencedaily.com/releases/2001/08/010831081037.htm>.
Rutgers, The State University Of New Jersey. (2001, August 31). Rutgers Professor Details How Polymers Improve Drug Delivery And Make Possible Crystal-Clear Water-Based Cosmetics. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2001/08/010831081037.htm
Rutgers, The State University Of New Jersey. "Rutgers Professor Details How Polymers Improve Drug Delivery And Make Possible Crystal-Clear Water-Based Cosmetics." ScienceDaily. www.sciencedaily.com/releases/2001/08/010831081037.htm (accessed August 30, 2014).

Share This




More Matter & Energy News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins