Featured Research

from universities, journals, and other organizations

Handeling Stress: Life And Death Decisions At The Cellular Level

Date:
September 17, 2001
Source:
Cold Spring Harbor Laboratory
Summary:
The daily life of a cell can be inordinately stressful. Two papers in the September 15th issue of Genes & Development highlight recent discoveries that have been made regarding how cells handle environmental stress, and decide whether or not their life is worth living. Both papers lend valuable insight into the ways that different cells respond to oxygen deprivation, or hypoxia.

The daily life of a cell can be inordinately stressful. Two papers in the September 15th issue of Genes & Development highlight recent discoveries that have been made regarding how cells handle environmental stress, and decide whether or not their life is worth living. Both papers lend valuable insight into the ways that different cells respond to oxygen deprivation, or hypoxia.

Related Articles


Teetering on the Edge

A team of scientists led by Dr. Bohdan Wasylyk at the INSERM research center in France has discovered that the steroid receptor, GR, and the tumor suppressor, p53, interact during periods of oxygen deprivation to help balance the decision between cell survival and cell death.

p53 is commonly referred to as "the guardian of the genome" for its integral role in mediating either cell cycle arrest or cell death in response to various types of cell stress. Loss of p53 function can lead to unregulated cell proliferation, an event that is associated with the development of most tumors. The glucocorticoid receptor, GR, binds steroid hormones and helps to mediate the normal response to stress.

Dr. Wasylyk and colleagues determined that under hypoxic conditions p53 and ligand-bound GR directly associate with one another in the cytoplasm of the cell. This p53/GR complex is then bound by another protein, Hdm2, which facilitates the degredation of both p53 and GR. In this manner, the p53-mediated death response is held in check by GR, and the GR-mediated survival response is held in check by p53. This antagonistic interaction between p53 and GR represents a novel mechanism to balance cell survival and cell death in response to environmental stress.

Nervous Stress

Scientists from UMASS Medical School and Yale University School of Medicine report on the involvement of a key player in the stress response pathway in neurons. The JIP1 protein is a component of a pathway that is activated in response to cell stress and can trigger cell death. JIP1 binds to a control protein, JNK, that regulates the activity of other proteins through the addition of phosphate groups. It is thought that JIP1 acts as a scaffold protein that facilitates the assembly of specific signaling complexes.

Dr. Davis and colleagues now show that in response to severe hypoxic stress, JIP1 in neurons is relocated from the neurites to the cell body where it forms a complex with activated JNK. But is JIP1 really required for JNK activation in response to stress? To address this question, the team generated a strain of mice deficient in JIP1. While JIP1-deficient mice were viable and fertile, studies on these mice showed that their neurons did not respond to stress. When JIP1-deficient neurons were exposed to hypoxic stress, JNK was not activated and stress-induced apoptosis was therefore reduced. Thus, JIP1 is clearly required for JNK activation and is a critical component of the stress-induced JNK signaling cascade.

The JNK stress pathway is thought to be important in many pathological conditions including the progression of some neurodegenerative diseases such as Huntington’s and also in cancer. This pathway therefore offers potential targets for therapeutic intervention. The identification of critical components of this signaling pathway, such as JIP1, offers new routes to understand how this pathway is regulated and potential ways of manipulating it to combat disease.


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Cold Spring Harbor Laboratory. "Handeling Stress: Life And Death Decisions At The Cellular Level." ScienceDaily. ScienceDaily, 17 September 2001. <www.sciencedaily.com/releases/2001/09/010917075255.htm>.
Cold Spring Harbor Laboratory. (2001, September 17). Handeling Stress: Life And Death Decisions At The Cellular Level. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2001/09/010917075255.htm
Cold Spring Harbor Laboratory. "Handeling Stress: Life And Death Decisions At The Cellular Level." ScienceDaily. www.sciencedaily.com/releases/2001/09/010917075255.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins