Featured Research

from universities, journals, and other organizations

Packard, Stanford Researchers Uncover Gene Family Critical To Asthma Development

Date:
December 4, 2001
Source:
Stanford University Medical Center
Summary:
A novel gene family that appears critical to the development of asthma in mice has been identified by researchers at Lucile Packard Children's Hospital at Stanford. The finding may revolutionize treatment and diagnosis of the more than 15 million people in the United States who suffer from asthma. It may also explain why incidence rates have climbed rapidly in industrialized countries over the past 20 years, say the researchers.

STANFORD, Calif., Nov. 29, 2001 - A novel gene family that appears critical to the development of asthma in mice has been identified by researchers at Lucile Packard Children's Hospital at Stanford. The finding may revolutionize treatment and diagnosis of the more than 15 million people in the United States who suffer from asthma. It may also explain why incidence rates have climbed rapidly in industrialized countries over the past 20 years, say the researchers.

Related Articles


Asthma researchers have known for years that the disease has a genetic component, but efforts to pinpoint specific genes have been stymied by the complexity of the disease, which involves more than a dozen independently acting genes. When the Stanford researchers used a special technique to look at the effects of only small stretches of DNA at a time, however, they identified a previously unknown group of nearby genes, called the Tim family, as primary culprits.

"It was only by using this mouse model that we could identify a locus and some potential candidate genes that could be inducing this phenomenon," said Rosemarie DeKruyff, PhD, senior author of the study, published in the December issue of Nature Immunology. "It was especially interesting when we found that the gene we homed in on encoded the hepatitis A receptor gene."

Infection with hepatitis A protects against asthma for reasons that have not been well understood. The newly discovered link between family member TIM-1 and the hepatitis A virus may help explain the association between the two diseases. Researchers speculate that binding of the virus to the hepatitis A receptor gene, TIM-1 somehow interferes with disease development in these infected individuals. If so, their finding may provide a clue as to why asthma rates have increased where hepatitis A infection rates have dropped over the past two decades.

"It may be that when hepatitis A binds to this receptor it somehow brings about a deletion of those cells that bias the immune response toward asthma," says DeKruyff, a professor of pediatrics at Packard. "But there are also other possible scenarios."

To carry out the research, Jennifer McIntire, an MD/PhD student working in DeKruyff's lab in collaboration with Dale Umetsu, MD, PhD, chief of the division of allergy and immunology, bred together two sets of mice. One set develops airway hyperreactivity, or AHR, after being exposed to an allergen, and another is resistant to AHR, which causes the shortness of breath, chest tightening, wheezing and coughing that are hallmarks of human asthma attacks.

Using a technique known as backcrossing, McIntire and her colleagues generated mice that were genetically identical to the susceptible mice, other than for small segments of DNA from the resistant group. They then looked for mice in the group that did not develop AHR when exposed to an allergen.

They found that mice containing a small segment of DNA similar to an asthma susceptibility region on human chromosome 5 were significantly less likely to develop AHR than the susceptible group, even though the two groups shared the rest of their genomes.

The region on human chromosome 5 contained some likely candidate genes, including several encoding proteins called cytokines that regulate the immune response leading to asthma. Many researchers had assumed that these cytokine genes were responsible for the increased asthma susceptibility conferred by the region. However, when McIntire and her colleagues analyzed the stretch of DNA more closely they found that the development of AHR was actually linked to a nearby group of genes, which they named the Tim family.

The researchers are now investigating whether this gene family is also linked to the development of asthma in humans.

DeKruyff's and McIntire's Stanford colleagues on the study include undergraduate Sarah Umetsu; Omid Akbari, PhD; and Dale Umetsu, MD, PhD, all in the division of allergy and immunology in the Department of Pediatrics; and Gregory Barsh, MD, PhD, in the Howard Hughes Institute and Departments of Pediatrics and Genetics.

Lucile Salter Packard Children's Hospital at Stanford is a 240-bed hospital devoted entirely to the care of children and expectant mothers that is celebrating its tenth anniversary in 2001. Providing pediatric medical and surgical services associated with Stanford University Medical Center, Packard offers patients locally, regionally and nationally with the full range of health care programs and services - from preventive and routine care to the diagnosis and treatment of serious illness and injury. To learn more about Lucile Packard Children's Hospital, please visit our Web site at www.lpch.org.


Story Source:

The above story is based on materials provided by Stanford University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Stanford University Medical Center. "Packard, Stanford Researchers Uncover Gene Family Critical To Asthma Development." ScienceDaily. ScienceDaily, 4 December 2001. <www.sciencedaily.com/releases/2001/11/011130074127.htm>.
Stanford University Medical Center. (2001, December 4). Packard, Stanford Researchers Uncover Gene Family Critical To Asthma Development. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2001/11/011130074127.htm
Stanford University Medical Center. "Packard, Stanford Researchers Uncover Gene Family Critical To Asthma Development." ScienceDaily. www.sciencedaily.com/releases/2001/11/011130074127.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins