Featured Research

from universities, journals, and other organizations

Lobster Sniffing: How Lobsters' Hairy Noses Capture Smells From The Sea

Date:
December 3, 2001
Source:
University Of California - Berkeley
Summary:
A study in the Friday, Nov. 30, issue of Science by researchers at the University of California, Berkeley, and Stanford University details the sophisticated way in which spiny lobsters sniff their way around a watery world, and may provide strategies for robot builders looking for efficient ways to create odor sensors.

Berkeley - Aquatic creatures like lobsters and crabs depend on smell to find food, a suitable mate or to avoid predators, but how do they pluck these odors from the water swirling around them?

A study in the Friday, Nov. 30, issue of Science by researchers at the University of California, Berkeley, and Stanford University details the sophisticated way in which spiny lobsters sniff their way around a watery world, and may provide strategies for robot builders looking for efficient ways to create odor sensors.

"If you want to build unmanned vehicles or robots to go into toxic sites where you do not want to send a scuba diver, and if you want those robots to locate something by smell, you need to design noses or olfactory antennae for them," said lead author Mimi A. R. Koehl, professor of integrative biology in the College of Letters & Science at UC Berkeley. "We are learning how animal antennae capture odor molecules from the water around them. We want to understand which designs of odor-catching antennae work successfully in nature so that they could provide inspiration for man-made antennae."

Lobsters and other crustaceans sniff by flicking a pair of antennules, dragging them through the water to bring chemosensory hairs on the ends of the antennules into contact with odor molecules. On some lobsters, the antennules can be rather short, though in the foot-long Caribbean spiny lobster Panulirus argus, they are between 3 and 4 inches long, with split ends. On the outer edge of one of the split ends of each antennule is a brush of hairs sensitive to chemicals.

The question the researchers asked is whether the incessant flicking of antennules can pick up fine details of the swirling odors, and how odor molecules penetrate into the brush of chemosensory hairs.

The UC Berkeley researchers first made high-speed videos of a lobster flicking its antennules in order to determine how fast, how far and how often they flick, and the angles of the down and return strokes.

Once they digitized the images and measured these details, they created a mechanical lobster that flicked in the same way. The mechanical lobster, which they dubbed Rasta Lobsta, was simply the molted shell of a spiny lobster filled with epoxy. Fresh antennules from lobsters could be mounted on this mechanical lobster and moved by a computerized motor to reproduce the motion of a flicking antennule.

They placed the mechanical lobster downstream of an "odor" source in a large water flow tank in the Environmental Fluid Mechanics Laboratory at Stanford University. Since odors are invisible, instead of the aroma of a tasty item, such as a rotting fish, the researchers substituted a fluorescent dye. The tank, operated by Jeffrey R. Koseff, professor of civil and environmental engineering at Stanford, and his colleagues, simulated the degree of turbulence a lobster might encounter while strolling along the ocean bottom.

Because they needed to see only the narrow slice of the odor plume hitting the antennule, which is only one milllimeter wide, they shone a thin sheet of laser light through the plume. While flicking the antennule, they made high-speed, close-up videos of the eddies and filaments in the dye plume to determine if and how the dye penetrated the array of chemosensory hairs at the antennule's tip.

What they found is that, during the downstroke, the lobster pushes the antennule through the water just fast enough for the water and dye to penetrate into the brush of sensory hairs, maintaining much of the detail in the swirls of dye.

On the return stroke, however, it sweeps more slowly, and the water is unable to move between the hairs. The fine filaments of dye that penetrated between the hairs during the downstroke are trapped within the brush of hairs until the next rapid downstroke. The lobsters sniff when they flick, and with each flick their antennules capture a detailed map of the swirling odors in the water, Koehl said.

She and her colleagues had predicted this after building a large model of the tiny hairs on a lobster nose and swishing it through Karo syrup, a set-up that mimics the physics of swishing real antennules through water. These experiments showed that water does not flow between the sensory hairs unless the antennule moves very rapidly - at the speed of the flick downstroke.

What this means is that, in the lobster's real world, small differences in odor concentration in a plume are preserved and captured by the array of hairs, though it is unclear whether the lobster can take advantage of this detailed information.

"It's clear that very detailed information does get into the receptor area when the lobster sniffs," Koehl said. "The next step is to figure out if it is using that information."

This will involve working with neuroscientists who can help relate odor concentration in the hairs to electrical signals triggered by the hairs. Much work has already been done on the nervous system of spiny lobsters, one reason Koehl chose to study them.

Koehl's lobster work is one of her many projects on the boundary between biology and engineering, where she seeks to discover the physical principles embodied in biological design.

"When you look at the animal kingdom, you see lots of creatures that capture odor from water or air using antennae that are feathery or hairy," Koehl said. "We want to know how these feathery structures interact with water or air when the creatures fly or sit in a current to catch molecules, and which aspects of their design affect how they perform at catching odors."

Earlier this year, she and Catherine Loudon, a former postdoctoral student now at the University of Kansas in Lawrence, described how the silkworm moth uses its wings to fan odors efficiently through its feathery antennae. Koehl and her UC Berkeley colleagues also study the hairy noses of crabs and mantis shrimp.

These feathery or hairy structures are used for more than smelling. Many animals have feathery gills to extract oxygen from water. Copepods, the most abundant animal in the oceans, use them to filter and eat single-celled algae. Many sea creatures use them for swimming, and tiny insects use them to fly.

"While engineers need to design structures to perform specific functions, we are studying organisms that already have a structure, and our job is to figure out how they function," she said.

Coauthors on the Science paper with Koehl and Koseff are graduate student Michael G. McCay and laboratory technician Tim Cooper of UC Berkeley; graduate student Megan B. Wiley and former postdoctoral fellow John P. Crimaldi of Stanford; and Paul A. Moore of the J. P. Scott Center for Neuroscience, Mind, and Behavior at Bowling Green State University, Ohio. Crimaldi now is an assistant professor of engineering at the University of Colorado.

The work is supported by the Office of Naval Research.


Story Source:

The above story is based on materials provided by University Of California - Berkeley. Note: Materials may be edited for content and length.


Cite This Page:

University Of California - Berkeley. "Lobster Sniffing: How Lobsters' Hairy Noses Capture Smells From The Sea." ScienceDaily. ScienceDaily, 3 December 2001. <www.sciencedaily.com/releases/2001/12/011203060730.htm>.
University Of California - Berkeley. (2001, December 3). Lobster Sniffing: How Lobsters' Hairy Noses Capture Smells From The Sea. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2001/12/011203060730.htm
University Of California - Berkeley. "Lobster Sniffing: How Lobsters' Hairy Noses Capture Smells From The Sea." ScienceDaily. www.sciencedaily.com/releases/2001/12/011203060730.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins