Featured Research

from universities, journals, and other organizations

Researchers Discover How Body’s Internal Clock Generates Daily Rhythms; Signals From Retina And Body Clock Received By Same Messenger

Date:
December 21, 2001
Source:
Harvard Medical School
Summary:
Harvard Medical School researchers have gained one of the first glimpses of how the body’s circadian clock—a tiny cluster of nerve cells behind the eyes—sends out the signals that control natural daily rhythms. The newly discovered pathway, reported in the December 21 Science, opens a long-closed door to research that could ultimately lead to new treatments for circadian disturbances such as certain sleep disorders.

Boston, MA —- Harvard Medical School researchers have gained one of the first glimpses of how the body’s circadian clock—a tiny cluster of nerve cells behind the eyes—sends out the signals that control natural daily rhythms. The newly discovered pathway, reported in the December 21 Science, opens a long-closed door to research that could ultimately lead to new treatments for circadian disturbances such as certain sleep disorders.

"If you could figure out the factors that are promoting wakefulness and sleep, that could in principle be turned into much better drugs for particular sleep disorders," said Chuck Weitz, HMS professor of neurobiology.

Circadian researchers have been remarkably successful in the past few years at identifying the molecular machinery—the genes and proteins—that make the circadian clock cells tick on a near 24-hour basis. But they were stymied when it came to figuring out how the machinery of these cells, located in the brain’s suprachiasmatic nucleus (SCN), actually drives such daily rhythms as the rise and fall of body temperature and the sleep–wake cycle. Researchers suspected that to achieve such rhythmic patterns, the clock must be switching molecular factors on and off, and even had an idea where in the brain the factors might reside, but no one had actually found any of them. Until now.

Weitz; Achim Kramer, HMS research fellow in neurobiology; and their HMS colleagues have identified the first of several factors controlling circadian locomotor patterns in a mammal, in this case the hamster. (Circadian movement patterns, which are characterized by periods of spontaneous physical activity occuring at the same time each day, exist in humans but are highly influenced by external factors.)

In addition, they have found that the factor, TGF-alpha, works through a middleman, the EGF receptor. Both proteins appear to be highly expressed in exactly the spots that had been predicted—TGF-alpha in the SCN and the EGF receptor in the nearby hypothalamus. Yet there are several unexpected aspects of the discovery. To begin, it appears that the duo regulate not just daily physical activity patterns but also the alternating pattern of wakefulness and sleep.

More surprising, perhaps, is the discovery that the EGF receptor middleman appears to receive information, in the form of TGF-alpha, not just from the clock but also from the eyes. The reason this is exciting is that circadian rhythms, though controlled by the clock, can be influenced by the outside world, particularly light, transmitted through the retina.

"In the real world it is both effects—the clock effect and some light effect that are really sculpting behavior," said Weitz. "No one had explicitly raised the possibility that the signal from the retina and the SCN might involve the same ligand or at least a ligand for the same receptor."

The group's discoveries made in hamsters are strengthened by their discovery that a strain of mutant mice with deficient quantities of EGF receptor do not display normal circadian movement patterns. "It all fits together," said Weitz.

This discovery illustrates how important flexible, private research funds are to opening new avenues of research. Weitz and colleagues were able to collect their data while supported solely through a grant from the Lefler Center for the Study of Neurodegenerative Disorders, which supports pilot research projects (http://neuro.med.harvard.edu/site/admin/Lefler/leflercenter.html). The Center’s grants make it possible for faculty and postdoctoral students to collect data in new scientific areas, and then apply for important federal grants using this vital pilot data.

Next, Weitz wants to explore whether the systems controlling other circadian behaviors are as elegant as the one controlling locomotion and sleep. "This is one step that gives us a way to look at these things that we did not have before," he said.


Story Source:

The above story is based on materials provided by Harvard Medical School. Note: Materials may be edited for content and length.


Cite This Page:

Harvard Medical School. "Researchers Discover How Body’s Internal Clock Generates Daily Rhythms; Signals From Retina And Body Clock Received By Same Messenger." ScienceDaily. ScienceDaily, 21 December 2001. <www.sciencedaily.com/releases/2001/12/011221081605.htm>.
Harvard Medical School. (2001, December 21). Researchers Discover How Body’s Internal Clock Generates Daily Rhythms; Signals From Retina And Body Clock Received By Same Messenger. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2001/12/011221081605.htm
Harvard Medical School. "Researchers Discover How Body’s Internal Clock Generates Daily Rhythms; Signals From Retina And Body Clock Received By Same Messenger." ScienceDaily. www.sciencedaily.com/releases/2001/12/011221081605.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins