Featured Research

from universities, journals, and other organizations

Inhibiting Cardiac Protein Through Gene Therapy Improves Human Heart Cell Function

Date:
February 27, 2002
Source:
Massachusetts General Hospital
Summary:
Blocking a key protein involved in calcium regulation can improve the function of failing heart cells, according to a study in the February 26 issue of Circulation. The work holds promise for treating congestive heart failure.

Blocking a key protein involved in calcium regulation can improve the function of failing heart cells, according to a study in the February 26 issue of Circulation. The work holds promise for treating congestive heart failure.

"We set out to inhibit a protein that blocks normal calcium flow in the heart," says principal investigator Roger Hajjar, MD, of the Cardiovascular Research Center (CVRC) and Heart Failure Center at Massachusetts General Hospital (MGH). "Usually with gene therapy, you add things, but here the strategy was to take something away."

Hajjar says heart failure in the aging is due to abnormal calcium levels in heart muscle cells. The current study focuses on phospholamban, a protein that regulates the activity of a molecular pump that controls calcium flow within cells and may be reduced in failing hearts. By blocking normal calcium regulation in heart cells, the natural inhibitory actions of phospholamban in a failing heart may prevent the cardiac muscle from relaxing and the heart from filling with blood appropriately. "When we targeted phospholamban, we were able to diminish it, and then calcium movement in the cells became normal," says Hajjar.

For the study, first author Frederica del Monte, MD, PhD, took cells from the hearts of nine end-stage patients who were about to undergo heart transplantations, with a goal of seeing if they could improve contraction and relaxation in these diseased cells using a gene therapy approach called antisense strategy. By injecting into cultured cell single-strand DNA that binds to the RNA message encoded by the phospholamban genes, the researchers were able to prevent the formation of the phospholamban protein. "When we knocked down the amount of protein that was formed, the heart cell contractions became normal," says Hajjar.

Ultimately, del Monte and Hajjar hope the treatment strategy can be used to correct heart failure and cut down on the need for heart transplants. "Over the past year, five patients at MGH alone have died while waiting for cardiac transplants," says Hajjar. "And for every cardiac transplant that is performed, there are so many patients on the waiting lists that die." He notes that many patients cannot even get on the waiting lists. Currently, preclinical trials are underway to test Hajjar?s antisense strategy in live animals.

Other co-authors of the report are G. William Dec, MD, of the MGH; Sian E. Harding, PhD, of the National (British) Heart and Lung Institute and Imperial College, London; and Judith K. Gwathmey, VMD, PhD, of Harvard Medical School. The study was supported by grants from the National Institutes of Health, the British Heart Foundation, and the Doris Duke Charitable Foundation.

The Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $300 million and major research centers in AIDS, the neurosciences, cardiovascular research, cancer, cutaneous biology, transplantation biology and photomedicine. In 1994, the MGH joined with Brigham and Women's Hospital to form Partners HealthCare System, an integrated health care delivery system comprising the two academic medical centers, specialty and community hospitals, a network of physician groups and nonacute and home health services.


Story Source:

The above story is based on materials provided by Massachusetts General Hospital. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts General Hospital. "Inhibiting Cardiac Protein Through Gene Therapy Improves Human Heart Cell Function." ScienceDaily. ScienceDaily, 27 February 2002. <www.sciencedaily.com/releases/2002/02/020226075532.htm>.
Massachusetts General Hospital. (2002, February 27). Inhibiting Cardiac Protein Through Gene Therapy Improves Human Heart Cell Function. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2002/02/020226075532.htm
Massachusetts General Hospital. "Inhibiting Cardiac Protein Through Gene Therapy Improves Human Heart Cell Function." ScienceDaily. www.sciencedaily.com/releases/2002/02/020226075532.htm (accessed August 22, 2014).

Share This




More Health & Medicine News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Two US Ebola Patients Leave Hospital Free of the Disease

Two US Ebola Patients Leave Hospital Free of the Disease

AFP (Aug. 21, 2014) Two American missionaries who were sickened with Ebola while working in Liberia and were treated with an experimental drug are doing better and have left the hospital, doctors say on August 21, 2014. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins