Featured Research

from universities, journals, and other organizations

Creation Of Tiny Magnets May Lead To Big Changes

Date:
March 12, 2002
Source:
University Of California - Riverside
Summary:
Researchers Guy Bertrand and David Scheschkewitz of the University of California, Riverside, and colleagues are opening new doors to understanding magnetic properties. On the other side of these doors lies the potential for developing new medical imaging devices and implants, efficient electrical conductors and non-metallic magnets.

Magnets are commonly found holding up photographs on home refrigerators and are perhaps best known as northward pointing needles in compasses. But they are far more common; indeed, their use is ubiquitous in industry and consumer products. Today a car uses no less than 300 parts that use the phenomenon of magnetism. Scientists are engaged in a search for new materials featuring magnetic properties and in understanding the basic fundamentals of magnetism.

Now, researchers Guy Bertrand and David Scheschkewitz of the University of California, Riverside, and colleagues are opening new doors to understanding magnetic properties. On the other side of these doors lies the potential for developing new medical imaging devices and implants, efficient electrical conductors and non-metallic magnets.

Put simply, all substances are formed by bonding atoms together using the atoms' valence electrons (valence electrons are electrons that are actively involved in chemical change). When one of these electrons is not used to form a bond, it results in a non-bonding electron, also called a radical. Magnetism results from the presence of many of these radicals coming close to one another.

Several research groups worldwide have shown that materials based on "diradicals" will be even more magnetically active. In a diradical, two atoms which are close to each other have electrons ready to form a bond. And indeed, the difficulty is that usually the bond is formed, resulting in no magnetism.

The UC Riverside chemists and their colleagues report in the 8 March 2002 issue of Science that they have prepared a "singlet diradical" where the two non-bonding electrons do not combine to form a bond. "The substance still remains a diradical," says Bertrand. "We have been able to obtain this diradical using the specific properties of two non-metallic elements boron and phosphorus."

Until now, the most stable singlet diradical, which can be used as a basic building block for making materials, had a lifetime in the order of micro seconds at room temperature. The new singlet diradical, on the other hand, is stable at room temperature, both in solution and in the solid state.

"This should pave the way for the availability of many stable singlet and triplet diradicals in the near future," says Bertrand. "Our new diradical can be handled under standard laboratory conditions, which is very beneficial. The next challenge will be to prepare the materials by replication of the diradicals. We can hope to get materials that would have the mechanical properties, the transparence, and the low density required for a new generation of magnets, magneto-optical and electrical devices."


Story Source:

The above story is based on materials provided by University Of California - Riverside. Note: Materials may be edited for content and length.


Cite This Page:

University Of California - Riverside. "Creation Of Tiny Magnets May Lead To Big Changes." ScienceDaily. ScienceDaily, 12 March 2002. <www.sciencedaily.com/releases/2002/03/020311075940.htm>.
University Of California - Riverside. (2002, March 12). Creation Of Tiny Magnets May Lead To Big Changes. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2002/03/020311075940.htm
University Of California - Riverside. "Creation Of Tiny Magnets May Lead To Big Changes." ScienceDaily. www.sciencedaily.com/releases/2002/03/020311075940.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Boeing Ups Outlook on 52% Profit Jump

Boeing Ups Outlook on 52% Profit Jump

Reuters - Business Video Online (July 23, 2014) Commercial aircraft deliveries rose seven percent at Boeing, prompting the aerospace company to boost full-year profit guidance- though quarterly revenues missed analyst estimates. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Car Market on the Rebound?

Europe's Car Market on the Rebound?

Reuters - Business Video Online (July 23, 2014) Daimler kicks off a round of second-quarter earnings results from Europe's top carmakers with a healthy set of numbers - prompting hopes that stronger sales in Europe will counter weakness in emerging markets. Hayley Platt reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins