Featured Research

from universities, journals, and other organizations

UT Southwestern Researchers Find Protein Transforms Sedentary Muscles To Resemble Exercised Muscles

Date:
April 11, 2002
Source:
University Of Texas Southwestern Medical Center At Dallas
Summary:
A calcium-signaling protein transforms sedentary, easily fatigued muscles into energy-producing, fatigue-resistant muscles, UT Southwestern Medical Center at Dallas researchers report.

DALLAS – April 12, 2002 – A calcium-signaling protein transforms sedentary, easily fatigued muscles into energy-producing, fatigue-resistant muscles, UT Southwestern Medical Center at Dallas researchers report.

Related Articles


In a study published in today’s issue of Science, the researchers found that by genetically expressing the protein in skeletal muscles of laboratory mice, easily fatigued, or type II, muscle fibers were transformed into fatigue-resistant and mitochondria-rich, or energy-producing, type I muscle fibers, which resemble muscles that have been exercised.

This research could lead to novel measures to stimulate muscles in patients with chronic diseases such as congestive heart failure or respiratory insufficiency, or individuals confined to bed rest.

“The muscles of individuals who are on bed rest resemble type II muscle fibers; they fatigue quickly and the muscles are tired,” said Dr. Rhonda Bassel-Duby, associate professor of internal medicine and co-author of the study. “If we have a way of mimicking this protein, we can convert the muscle with a drug to a more fatigue-resistant, mitochondria-rich muscle.”

Researchers expressed the active form of the calcium signaling protein called calcium/calmodulin-dependent protein kinase (CaMK) in the skeletal muscles of transgenic mice. CaMK controls production of mitochondria – structures in cells that are responsible for energy production – in mammalian muscle tissue.

“Calcium signaling plays an essential role in muscle remodeling,” said Dr. Hai Wu, lead author of the study and a postdoctoral research fellow in molecular biology.

“CaMK has been intensely studied in neurons, where it is responsible for neuron plasticity and involved in learning and memory. Both neurons and muscle cells are excitable, and they share a lot of common signaling pathways in response to either brain activity or exercise,” he said.

Further studies will be conducted to determine the specific properties of CaMK responsible for these effects.

“Greater understanding of the molecular-signaling pathways by which skeletal muscles sense and respond to changing activity patterns by altering gene expression ultimately may promote the development of novel measures to enhance the oxidative state of muscle, producing fatigue-resistant muscle,” Bassel-Duby said. “This could enhance muscle performance of patients overcoming muscle immobility or recovering from illnesses producing muscle fatigue such as heart failure.”

Other researchers involved in the study were Dr. Eiji Isotani, a visiting assistant professor in physiology; Dr. Shane Kanatous, a postdoctoral research fellow in internal medicine; Teresa Gallardo, a research scientist in cardiology; Dr. Frederick Thurmond, a postdoctoral research fellow in internal medicine; Dr. R. Sanders Williams, formerly chief of cardiology at UT Southwestern and presently dean of Duke University School of Medicine.

The study was funded by grants from the National Institutes of Health.


Story Source:

The above story is based on materials provided by University Of Texas Southwestern Medical Center At Dallas. Note: Materials may be edited for content and length.


Cite This Page:

University Of Texas Southwestern Medical Center At Dallas. "UT Southwestern Researchers Find Protein Transforms Sedentary Muscles To Resemble Exercised Muscles." ScienceDaily. ScienceDaily, 11 April 2002. <www.sciencedaily.com/releases/2002/04/020411071621.htm>.
University Of Texas Southwestern Medical Center At Dallas. (2002, April 11). UT Southwestern Researchers Find Protein Transforms Sedentary Muscles To Resemble Exercised Muscles. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2002/04/020411071621.htm
University Of Texas Southwestern Medical Center At Dallas. "UT Southwestern Researchers Find Protein Transforms Sedentary Muscles To Resemble Exercised Muscles." ScienceDaily. www.sciencedaily.com/releases/2002/04/020411071621.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins