Featured Research

from universities, journals, and other organizations

Ultrapermeable, Reverse-Selective Membranes Developed; NC State Researchers Create "Surprising" Polymers

Date:
April 22, 2002
Source:
North Carolina State University
Summary:
Polymer membranes that "simultaneously and surprisingly" improve permeability while favoring bigger molecules over smaller ones have been developed by a team of researchers at North Carolina State University.

Polymer membranes that "simultaneously and surprisingly" improve permeability while favoring bigger molecules over smaller ones have been developed by a team of researchers that includes Dr. Richard J. Spontak, associate professor of chemical engineering at North Carolina State University.

The "ultrapermeable, reverse-selective, nanocomposite membranes" are described in a paper published in the April 19 issue of the journal Science. According to the authors, the membranes should be useful in environmental remediation, seawater desalinization, biological purification and other molecular separations - including gas and petroleum production.

At NC State, the research team included Drs. Timothy Merkel and Benny Freeman, who with Spontak conducted this work in the Department of Chemical Engineering. Merkel is now at the Research Triangle Institute and Freeman has since joined the University of Texas at Austin.

The membranes are called reverse-selective because, contrary to expectations, they permit the preferential passage of larger molecules - such as butane - relative to small molecules, such as methane.

"In conventional membranes, increasing permeability invariably leads to decreased selectivity," said Spontak. "To use an analogy, if you make the holes in a net big enough, ping-pong balls, tennis balls, and basketballs will all make it through. With our membranes, we can achieve both high permeability and reverse selectivity - in other words, our net preferentially lets basketballs get through."

The research team achieved their results by embedding very fine silica particles into high-free-volume, glassy polymer membranes. As the researchers discovered, the resulting membranes behave unlike similar membranes embedded with metal oxides, carbon black or other nanoscale particles. Instead of the reduced permeability typical of "filled" membranes, the chemical engineers found both dramatically increased permeability and enhanced selectivity.

"The fact that both permeability and vapor selectivity increase when we add fumed silica to the polymer," said Merkel, "indicates that these particles modify transport properties without introducing gross defects or selectivity-destroying gaps into the membrane."

The research should benefit industries like natural-gas suppliers and petroleum processors now struggling with energy-intensive and expensive methods of separating gases.

For examples of reverse-selective membrane applications, the authors cite "the removal of higher hydrocarbons from methane in the purification of natural gas, organic monomer separation from nitrogen in the production of polyolefins, and hydrocarbon removal from hydrogen in refineries."

The NC State research team worked with Zhenjie He and Dr. Ingo Pinnau, both of Membrane Technology and Research in Menlo Park, Calif., and Drs. Pavla Meakin and Anita Hill at the Commonwealth Scientific and Industrial Research Organization in Clayton, Australia.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Cite This Page:

North Carolina State University. "Ultrapermeable, Reverse-Selective Membranes Developed; NC State Researchers Create "Surprising" Polymers." ScienceDaily. ScienceDaily, 22 April 2002. <www.sciencedaily.com/releases/2002/04/020422073613.htm>.
North Carolina State University. (2002, April 22). Ultrapermeable, Reverse-Selective Membranes Developed; NC State Researchers Create "Surprising" Polymers. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2002/04/020422073613.htm
North Carolina State University. "Ultrapermeable, Reverse-Selective Membranes Developed; NC State Researchers Create "Surprising" Polymers." ScienceDaily. www.sciencedaily.com/releases/2002/04/020422073613.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins