New! Sign up for our free email newsletter.
Science News
from research organizations

Molecular "Motor" Drives Rotavirus Replication

Date:
May 20, 2002
Source:
Baylor College Of Medicine
Summary:
A non-structural protein called NSP2 appears to be the molecular “motor” that drives replication of rotavirus within cells lining the gastrointestinal tract -- a finding that could enable development of drugs to fight the virus, the major cause of life-threatening diarrhea in infants worldwide, said Baylor College of Medicine researchers.
Share:
FULL STORY

HOUSTON -- (May 16, 2002) -- A non-structural protein called NSP2 appears to be the molecular “motor” that drives replication of rotavirus within cells lining the gastrointestinal tract -- a finding that could enable development of drugs to fight the virus, the major cause of life-threatening diarrhea in infants worldwide, said Baylor College of Medicine researchers.

In the May 16 issue of the journal Nature, Baylor's Dr. B.V. Venkataram Prasad and graduate student Hariharan Jayaram and their collaborators for the first time described the atomic structure of this protein that may provide some mechanistic insights into how it either drives viral genome replication or packaging during the assembly of the new viral particles within the cell.

Identifying these kinds of targets that can be used in developing anti-viral drugs may become particularly important in rotavirus since the first vaccine against rotavirus was pulled from the market in late 1999, said Prasad, a professor in the department of biochemistry and molecular biology.

Proteins similar to NSP2 exist in all kinds of double-stranded RNA viruses. They are perhaps the central piece around which the replication machinery of the virus is constructed. That machinery makes one strand of RNA, which provides a template to make a matching strand resulting in the production of the double-strand that contains the virus’ genetic code, he said. That enables the virus to produce many copies of itself that can go on to infect more cells and eventually cause diarrhea. Interfering with the action of a protein like NSP2 could stop the virus in its tracks, said Prasad.

Prasad and Jayaram, of Baylor's program in structural and computational biology and molecular physics, collaborated with Dr. Zenobia Taraporewala and Dr. John T. Patton, of the National Institute of Allergy and Infectious Diseases, on the project.


Story Source:

Materials provided by Baylor College Of Medicine. Note: Content may be edited for style and length.


Cite This Page:

Baylor College Of Medicine. "Molecular "Motor" Drives Rotavirus Replication." ScienceDaily. ScienceDaily, 20 May 2002. <www.sciencedaily.com/releases/2002/05/020516081932.htm>.
Baylor College Of Medicine. (2002, May 20). Molecular "Motor" Drives Rotavirus Replication. ScienceDaily. Retrieved April 18, 2024 from www.sciencedaily.com/releases/2002/05/020516081932.htm
Baylor College Of Medicine. "Molecular "Motor" Drives Rotavirus Replication." ScienceDaily. www.sciencedaily.com/releases/2002/05/020516081932.htm (accessed April 18, 2024).

Explore More

from ScienceDaily

RELATED STORIES