Featured Research

from universities, journals, and other organizations

New Signaling Pathway Found, May Be Linked To Movement Disorders

Date:
July 15, 2002
Source:
Washington University School Of Medicine
Summary:
Though previous evidence points to the contrary, scientists have discovered that the protein known as fibroblast growth factor 14 (FGF14) may not actually behave like a growth factor. The research suggests that FGF14 is instead involved in transmitting signals from one nerve cell to another and may help regulate walking and other movements. The protein could, therefore, be linked to movement disorders such as Parkinson's and Huntington's diseases.

St. Louis, July 11, 2002 — Though previous evidence points to the contrary, scientists have discovered that the protein known as fibroblast growth factor 14 (FGF14) may not actually behave like a growth factor. The research suggests that FGF14 is instead involved in transmitting signals from one nerve cell to another and may help regulate walking and other movements. The protein could, therefore, be linked to movement disorders such as Parkinson's and Huntington's diseases.

Related Articles


"We believe we have found a new signaling pathway in the brain," says study leader David M. Ornitz, M.D., Ph.D., professor of molecular biology and pharmacology at Washington University School of Medicine in St. Louis. "Once we learn what FGF14 does at the molecular level, I believe we may uncover a new mechanism for regulating nerve cell function."

The work is published in the July 3 issue of the journal Neuron. It is the first study to examine the role of FGF14 in living animals and could provide new targets for testing future drugs designed to treat movement disorders and seizures, says Ornitz, who also leads the cancer and developmental biology program at the Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine.

Ornitz and the team of investigators developed a strain of mice lacking the gene for FGF14. They expected these mice to have brain abnormalities and to perhaps die before birth. To their surprise, however, the mice seemed physically healthy and lived relatively normal lives, though most were about 15 percent under-weight after two weeks of age.

But the young mice did develop coordination problems and abnormal posture. Compared with normal mice, the genetically altered animals walked sluggishly and shuffled, and they had reduced muscle strength. They also were less sensitive to stimulants such as cocaine and amphetamines and were more prone to drug-induced seizures. The investigators also examined the animals' brains. When they disabled the gene for FGF14, the team had ensured that a fraction of the protein remained intact and replaced the rest with a protein that appears blue when exposed to certain chemicals.

This marker molecule revealed that FGF14 was primarily found in three regions of the mouse nervous system: the cerebellum and basal ganglia in the brain and the motor tracts of the spinal cord. All three areas are involved in regulating movement. The basal ganglia, in particular, are affected by Parkinson's disease and other movement disorders.

Also surprisingly, FGF14 fragments also showed up in the long projections—the axons—of the nerve cells.

"This tells us that FGF14 recognizes the machinery that transports material down the axon to the area of the synapse, where nerve impulses jump from one neuron to the next," says Ornitz.

What it does at the synapse is a question Ornitz plans to investigate next. He speculates that FGF14 could signal the formation or release of neurotransmitters, modulate electrical signals or mechanisms that transport electrical signals or regulate the transport of molecules down the axon.

"Any number of things are possible," he says.

One thing is certain, though. "It's pretty clear now that FGF14 is not a growth factor," he says.

Reference: Wang Q, Bardgett ME, Wong M, Wozniak DF, Lou J, McNeil BD, Chen C, Nardi A, Reid DC, Yamada K, Ornitz DM. Ataxia and Paroxysmal dyskinesia in mice lacking axonally transported FGF14. Neuron, 35, 1-20, July 3, 2002.

Funding from the National Institutes of Health and the Virginia Friedhofer Charitable Trust supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.


Story Source:

The above story is based on materials provided by Washington University School Of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Washington University School Of Medicine. "New Signaling Pathway Found, May Be Linked To Movement Disorders." ScienceDaily. ScienceDaily, 15 July 2002. <www.sciencedaily.com/releases/2002/07/020715074726.htm>.
Washington University School Of Medicine. (2002, July 15). New Signaling Pathway Found, May Be Linked To Movement Disorders. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2002/07/020715074726.htm
Washington University School Of Medicine. "New Signaling Pathway Found, May Be Linked To Movement Disorders." ScienceDaily. www.sciencedaily.com/releases/2002/07/020715074726.htm (accessed October 30, 2014).

Share This



More Health & Medicine News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Google To Use Nanoparticles, Wearables To Detect Disease

Google To Use Nanoparticles, Wearables To Detect Disease

Newsy (Oct. 29, 2014) Google X wants to improve modern medicine with nanoparticles and a wearable device. It's all an attempt to tackle disease detection and prevention. Video provided by Newsy
Powered by NewsLook.com
Can Drinking Milk Lead To Early Death?

Can Drinking Milk Lead To Early Death?

Newsy (Oct. 29, 2014) Researchers in Sweden released a study showing heavy milk drinkers face an increased mortality risk from a variety of causes. Video provided by Newsy
Powered by NewsLook.com
Obama: The US Will Not 'run and Hide' From Ebola

Obama: The US Will Not 'run and Hide' From Ebola

AP (Oct. 29, 2014) Surrounded by health care workers in the White House East Room, President Barack Obama said the U.S. will likely see additional Ebola cases in the weeks ahead. But he said the nation can't seal itself off in the fight against the disease. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins