Featured Research

from universities, journals, and other organizations

Artificial Antibodies Created By New Molecular Imprinting Process

Date:
July 25, 2002
Source:
University Of Illinois At Urbana-Champaign
Summary:
A team of chemists at the University of Illinois at Urbana-Champaign, led by professors Steven C. Zimmerman and Kenneth S. Suslick, has developed a way of creating artificial antibodies. The process -- which they describe in the July 25 issue of the journal Nature -- is a general approach wherein one molecule imprints its structure within a larger host molecule, in much the same way an object can cast its own shape in plaster of paris.

CHAMPAIGN, Ill. -- Nature is especially adept at producing molecules that can recognize and bind other molecules. For example, antibody molecules will search out and bind a single foreign molecule, called an antigen, from among myriad other natural substances. This type of exquisite molecular recognition has long inspired chemists, who for decades have tried to make molecules that are capable of performing similar feats.

Related Articles


Now, a team of chemists at the University of Illinois at Urbana-Champaign, led by professors Steven C. Zimmerman and Kenneth S. Suslick, has developed a way of creating artificial antibodies. The process -- which they describe in the July 25 issue of the journal Nature -- is a general approach wherein one molecule imprints its structure within a larger host molecule, in much the same way an object can cast its own shape in plaster of paris.

"This is the first example of molecular imprinting in which a single molecular template is imprinted into a single macromolecule -- a highly branched polymer called a dendrimer," said Zimmerman, a William H. and Janet Lycan Professor of Chemistry at Illinois. "Upon removal of the template, we have a synthetic molecular shell that can bind specifically shaped molecules and reject all others, just like a natural antibody."

The process Zimmerman and Suslick describe is analogous to Linus Pauling's 1940 proposal for how antibodies are formed in response to the presence of an antigen. Although Pauling's mechanism proved to be incorrect, it inspired considerable experimental work, which ultimately led to the modern field of polymer imprinting.

One disadvantage of conventional polymer imprinting is that each "antigen" or template molecule produces an artificial antibody containing all kinds of different binding sites, most of which have poor recognition abilities and are therefore ineffective.

"Using dendrimers for imprinting one molecule against another is much faster and more efficient," Zimmerman said. "And, having a single binding site within a single polymer means we can more easily separate the good imprints from the bad."

To make their molecular molds, the researchers begin by attaching wedge-shaped molecules called dendrons to a porphyrin core to create a dendrimer. The flexible dendrimer scaffolding is then cross-linked in a chemical reaction that stitches together the end-groups of the dendrons. Lastly, a hydrolysis reaction chemically clips out the core, leaving a hollow space that can selectively and tightly bind appropriately shaped molecules.

"The technique is similar to the lost wax process used in metal casting," said Suslick, also a William H. and Janet Lycan Professor of Chemistry at Illinois. "In essence, we are molding this dendrimer around our template and creating a rigid cast that functions like a molecular lock for a molecular key."

The technique should be applicable to many molecules and a host of molecular recognition tasks. Potential applications include organic catalysts, medical diagnostics, and sensors for various pollutants and chemical warfare agents.

"Right now, we have a conceptual advance," Zimmerman said. "We've shown there's a new approach that can imprint a single molecule within a single molecule. Ultimately, we envision taking a template, and in a single step growing the scaffolding that can then be linked together to make a rigid mold."

In addition to Zimmerman and Suslick, collaborators on the project were graduate students Michael Wendland and Neal Rakow (both now at 3M) and Ilya Zharov, a postdoctoral research associate at the university's Beckman Institute for Advanced Science and Technology. The National Institutes of Health and the U.S. Army Research Office funded the work.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Artificial Antibodies Created By New Molecular Imprinting Process." ScienceDaily. ScienceDaily, 25 July 2002. <www.sciencedaily.com/releases/2002/07/020725081310.htm>.
University Of Illinois At Urbana-Champaign. (2002, July 25). Artificial Antibodies Created By New Molecular Imprinting Process. ScienceDaily. Retrieved January 31, 2015 from www.sciencedaily.com/releases/2002/07/020725081310.htm
University Of Illinois At Urbana-Champaign. "Artificial Antibodies Created By New Molecular Imprinting Process." ScienceDaily. www.sciencedaily.com/releases/2002/07/020725081310.htm (accessed January 31, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, January 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

CDC: Get Vaccinated for Measles

CDC: Get Vaccinated for Measles

Reuters - US Online Video (Jan. 30, 2015) The CDC is urging people to get vaccinated for measles amid an outbreak that began at Disneyland and has now infected more than 90 people. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Obama To Outline New Plan For Personalized Medicine

Obama To Outline New Plan For Personalized Medicine

Newsy (Jan. 30, 2015) President Obama is expected to speak with drugmakers Friday about his Precision Medicine Initiative first introduced last week. Video provided by Newsy
Powered by NewsLook.com
NFL Concussions Down; Still on Parents' Minds

NFL Concussions Down; Still on Parents' Minds

AP (Jan. 30, 2015) The NFL announced this week that the number of game concussions dropped by a quarter over last season. Still, the dangers of the sport still weigh on players, and parents&apos; minds. (Jan. 30) Video provided by AP
Powered by NewsLook.com
U.S. Wants to Analyze DNA from 1 Million People

U.S. Wants to Analyze DNA from 1 Million People

Reuters - US Online Video (Jan. 30, 2015) The U.S. has proposed analyzing genetic information from more than 1 million American volunteers to learn how genetic variants affect health and disease. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins