Featured Research

from universities, journals, and other organizations

Jumping Genes Can Knock Out DNA; Alter Human Genome

Date:
August 9, 2002
Source:
University Of Michigan Health System
Summary:
Results of a new University of Michigan study suggest that junk DNA – dismissed by many scientists as mere strings of meaningless genetic code – could have a darker side.

ANN ARBOR, MI – Results of a new University of Michigan study suggest that junk DNA – dismissed by many scientists as mere strings of meaningless genetic code – could have a darker side.

In a paper published in the Aug. 9 issue of Cell, scientists from the U-M Medical School report that, in cultured human cancer cells, segments of junk DNA called LINE-1 elements can delete DNA when they jump to a new location – possibly knocking out genes or creating devastating mutations in the process.

"The value of this study is the unexpected knowledge that LINE-1 elements have the potential to cause broad-spectrum mutations in individual tumor cells," says John V. Moran, Ph.D., an assistant professor of human genetics and internal medicine in the U-M Medical School.

Transposable LINE-1 or L1 elements make up 17 percent of human DNA, according to Moran, who developed the first assay to identify mobile L1s in the human and mouse genome. L1s "reproduce" by using RNA and a process called reverse transcription to make complementary DNA copies of themselves, as they integrate into other DNA sequences.

"Of 37 transposable events in our study, four resulted in deletions of genetic material," says Nicolas Gilbert, Ph.D., a U-M post-doctoral fellow in human genetics. "One of the deletions was more than 24 Kb in length [24,000 individual units of DNA called nucleotides] and potentially as large as 71 Kb. That's roughly equivalent to the size of BRCA1, a well-known gene that helps prevent the development of breast cancer."

"In cultured cells, we know that L1s can add to the genome by increasing its size, and now we've learned that they can decrease genome size by deleting genetic material," says Sheila Lutz-Prigge, a U-M research associate and co-author of the study. "But we have no control over the size or location of the deletion, and we don't yet know how often it occurs in humans."

Moran and his research team are part of a small group of scientists who study L1s in the human genome. "My personal feeling is that L1s built our genome and have continued to co-evolve with us for millions of years in sort of a host-parasite relationship," Moran says. "The more we learn about L1s, the more we'll learn about the evolution of the human genome."

When the project began, Gilbert and Lutz-Prigge were simply looking for a faster, more efficient way to figure out where L1s land when they jump and what changes L1s make in the original DNA sequence. Instead of using time-consuming, traditional molecular cloning techniques, they developed a new plasmid cassette technology and used E. coli bacteria to churn out multiple copies of DNA at the insertion site.

"Before Nico and Sheila developed this technique, we could jump L1s into cells, but we could never get them out efficiently," Moran explains. "Now we can see where L1s integrate and what they change. Access to the draft human genome lets us isolate the original site prior to L1 integration, and compare it with the post-integration sequence. We have gone from characterizing four events over a six-year period to about 50 events within the last 18 months."

Moran says one of the more intriguing results of the study is that L1s use different mechanisms to create new breaks, or take advantage of existing breaks, in DNA. He suspects L1s interact in multiple ways with host enzymes in the cell.

"The L1 is always the same, no matter what cell it's in, so if you end up with different rearrangements, that implies interaction between host factors and the L1 retrotransposition machinery," he says. "The more we study L1s, the more we realize how little we know about them. In biology, the stories are always simple until somebody delves deeper into them."

The research project was supported by the W.M. Keck Foundation, the National Institutes of Health, the March of Dimes, and the U-M Comprehensive Cancer Center.


Story Source:

The above story is based on materials provided by University Of Michigan Health System. Note: Materials may be edited for content and length.


Cite This Page:

University Of Michigan Health System. "Jumping Genes Can Knock Out DNA; Alter Human Genome." ScienceDaily. ScienceDaily, 9 August 2002. <www.sciencedaily.com/releases/2002/08/020809071852.htm>.
University Of Michigan Health System. (2002, August 9). Jumping Genes Can Knock Out DNA; Alter Human Genome. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2002/08/020809071852.htm
University Of Michigan Health System. "Jumping Genes Can Knock Out DNA; Alter Human Genome." ScienceDaily. www.sciencedaily.com/releases/2002/08/020809071852.htm (accessed October 21, 2014).

Share This



More Health & Medicine News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Nigeria Beat Its Ebola Outbreak

How Nigeria Beat Its Ebola Outbreak

Newsy (Oct. 20, 2014) The World Health Organization has declared Nigeria free of Ebola. Health experts credit a bit of luck and the government's initial response. Video provided by Newsy
Powered by NewsLook.com
Another Study Suggests Viagra Is Good For The Heart

Another Study Suggests Viagra Is Good For The Heart

Newsy (Oct. 20, 2014) An ingredient in erectile-dysfunction medications such as Viagra could improve heart function. Perhaps not surprising, given Viagra's history. Video provided by Newsy
Powered by NewsLook.com
Ebola Worries End for Dozens on U.S. Watch Lists

Ebola Worries End for Dozens on U.S. Watch Lists

Reuters - US Online Video (Oct. 20, 2014) Forty-three people who had contact with Thomas Eric Duncan, the first person diagnosed with Ebola in the U.S., were cleared overnight of twice-daily monitoring after 21 days of showing no symptoms. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
CDC Calls for New Ebola Safety Guidelines

CDC Calls for New Ebola Safety Guidelines

AP (Oct. 20, 2014) Centers for Disease Control and Prevention Director Dr. Tom Frieden laid out new guidelines for health care workers when dealing with the deadly Ebola virus including new precautions when taking off personal protective equipment. (Oct. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins